Gotta Catch ‘Em All, With An Arduino

PKMN

For every pokemon you encounter on your adventure to become the world’s greatest trainer, you have about a 1 in 8000 chance of that pokemon being ‘shiny’, or a different color than normal. Put an uncommon event in any video game, and of course a few people will take that feature to the limits of practicality: [dekuNukem] created the Poke-O-Matic, a microcontroller-powered device that breeds and captures shiny pokemon.

We’ve seen [dekuNukem]’s setup for automatically catching shiny pokemon before, but the previous version was extremely limited. It only worked with a fishing rod, so unless you want a ton of shiny Magikarp the earlier setup wasn’t extremely useful.

This version uses two microcontrollers – an Arduino Micro and a Teensy 3.0 – to greatly expand upon the previous build. Now, instead of just fishing, [dekuNukem]’s project can automatically hatch eggs, search patches of grass for shiny pokemon, and also automatically naming these new shiny pokemon and depositing them in the in-game pokemon storage system.

The new and improved version works a lot like the older fishing-only automated pokemon finder; a few wires soldered on to the button contacts control the game. The Teensy 3.0 handles the data logging of all the captured pokemon with an SD card and RTC.

What did [dekuNukem] end up with for all his effort? A lot of shiny pokemon. More than enough to build a great team made entirely out of shinies.

Video below, with all the code available through a link in the description.

Continue reading “Gotta Catch ‘Em All, With An Arduino”

An Arduino With Better Speech Recognition Than Siri

The lowly Arduino, an 8-bit AVR microcontroller with a pitiful amount of RAM, terribly small Flash storage space, and effectively no peripherals to speak of, has better speech recognition capabilities than your Android or iDevice.  Eighty percent accuracy, compared to Siri’s sixty.Here’s the video to prove it.

This uSpeech library created by [Arjo Chakravarty] uses a Goertzel algorithm to turn input from a microphone connected to one of the Arduino’s analog pins into phonemes. From there, it’s relatively easy to turn these captured phonemes into function calls for lighting a LED, turning a servo, or even replicating the Siri, the modern-day version of the Microsoft paperclip.

There is one caveat for the uSpeech library: it will only respond to predefined phrases and not normal speech. Still, that’s an extremely impressive accomplishment for a simple microcontroller.

This isn’t the first time we’ve seen [Arjo]’s uSpeech library, but it is the first time we’ve seen it in action. When this was posted months and months ago, [Arjo] was behind the Great Firewall of China and couldn’t post a proper demo. Since this the uSpeech library is a spectacular achievement we asked for a few videos showing off a few applications. No one made the effort, so [Arjo] decided to make use of his new VPN and show off his work to the world.

Video below.

Continue reading “An Arduino With Better Speech Recognition Than Siri”

The Crowbox Turns Crows Into A Cash Machine

kit_lg

[Joshua Klein] is intrigued by crows, and in particular, their intelligence. He’s devised a system that may be able to train wild crows into performing useful tasks, such as exchanging lost coins for treats.

The idea started as a random conversation at a cocktail party almost 10 years ago, and now has become a reality. In fact, we actually mentioned this project’s beginnings 5 years ago! So far they have succeeded in training captive crows to exchange lost coins using the Crowbox to receive treats. The end goal however is to teach wild crows the same thing — once this is proven, it could be extended to other tasks, like search and rescue, sorting through discarded electronics, or even garbage collection!

The project is opensource, and the Arduino driven Crowbox is looking for alpha-testers to help experiment with wild crows from different locals. The current community is rather small, so if you’re interested in the concept, please check it out. We’ve attached [Joshua’s] excellent TED talk on the intelligence of crows after the break — if you’re not fascinated by crows yet, you will be!

Continue reading “The Crowbox Turns Crows Into A Cash Machine”

Project Lucidity Wants YOU!

dreamingz

Do you lucid dream? Do you want to? [Dinesh Seemakurty] has just started something called Project Lucidity, which is the first(?) open source, developer friendly, fully featured, lucid dreaming sleep mask. And he’s looking for hackers to help!

We’ve covered lots of projects on lucid dreaming before, like making your own homemade lucid dreaming goggles, or modifying a commercial EEG headset for lucid dreaming. We also can’t forget the LucidScribe project either, the one that seeks to communicate from within dream state!

Anyway, what’s different about Project Lucidity? Well, first of all, it’s open source. Second of all, it’s based on an ATMEGA328P, meaning it’s fully compatible with the Arduino IDE. It looks like a great start, and [Dinesh] is planning on taking everything open source very soon — but before then he wants you to try it out!

If this sounds like a project you want to get behind and help develop, check out his site and sign up. Or ask away in the comments section!

Vibe Mirror

FLRGC76HP7M9BLI.LARGE

We love a good art-related project here at Hackaday, and [Wolfgang’s] vibrating mirror prototype is worth a look: into its distorting, reflective surface, of course.

[Wolfgang] began by laser cutting nine 1″ circles from an 8″ square mirror, then super glued a 1/4″ neoprene sheet to the back of the square, covering the holes. Each circular cutout received some custom acrylic backings, glued in place with a short piece of piano wire sticking out of the center. The resulting assemblage pushes through the neoprene backing like a giant thumbtack, thus holding all nine circular mirrors in place without restricting movement. The back end of the piano wire connects to yet another piece of acrylic, which is glued to a tiny vibrating motor.

He uses some shift registers and an Arduino Uno to control the motors, and although there’s no source code to glance it, we’re guessing [Wolfgang] simply designed the nine mirrors to buzz about in different patterns and create visually interesting compositions. Check out a quick video of the final effect after the break, and if you can help [Wolfgang] out with a name for his device, hit us up with your suggestions in the comments.

Continue reading “Vibe Mirror”

Elinchrom EL-Skyport Triggered By Arduino

Screenshot 2013-12-25 08.39.33

[Toby] has an Elinchrom EL-Skyport, which is a wireless flash trigger. He decided to see if he could trigger it using an Arduino, and came up with a nice proof of concept. This little device was not meant to be user serviceable, as can be seen in what [Toby] uncovered while taking it apart. But once he had it disassembled, he cataloged everything inside, and then he awesomely went to the trouble of drawing up a schematic. With that knowledge, he began reverse engineering the SPI protocol used, which almost deserves an article by itself.

It was a long road to get there, but in the end [Toby] built a prototype Arduino shield that houses an nRF24L01+ module. These are very cheap to pick up on eBay. He gives us the details on hooking up the module, though he had to go through extra hoops since he was using the Arduino Leonardo. Still, once you’re up and running, you can make use of one of the existing libraries specifically for this module.

Thanks to his effort, the rest of us have one more device to hack on. Thanks [Toby]!

Continue reading “Elinchrom EL-Skyport Triggered By Arduino”

Quick Candy Sorting Machine

OCD. Sometimes things just get to you, like those pesky bags of randomly assorted candies. [Torsten] decided to build a sorting machine capable of sorting Skittles or M&Ms into separate cups by color at around 80 pieces per minute. It’s a great implementation, using an Arduino Duo. He based the code on the principles of a finite-state machine, in order to make it as quick as possible.

It works as you would expect: When a candy piece is loaded, the color is determined using an RGB sensor. A 360-degree servo is used to move the chute to the proper position, and interestingly, the system preemptively releases the candy before the chute is in position in order to maximize the speed. If you watch closely, you can see this behavior in the video (embedded after the break).

[Torsten] includes a complete bill of materials, if you’d like to try it for yourself. He also included a list of possible improvements.

Continue reading “Quick Candy Sorting Machine”