You Can Add Wireless Charging To IPhone… Kinda

We could watch cellphone teardown videos all day long. There’s something pleasing about seeing how everything is packed into such a small enclosure. From the connectors, to that insidious glue, to the minuscule screws, [Scotty Allen] has a real knack for giving us a great look at the teardown process. Take a look at his latest video which attempts to add wireless charging to an iPhone. I think there’s a lot to be said for superb lighting and a formidable camera, but part of this is framing the shots just right.

Now of course we’ve taken apart our fair share of phones and there’s always that queasy “I think I’m going to break something” feeling while doing it. It’s reassuring that [Scotty] isn’t able to do things perfectly either (although he has the benefit of walking the markets for quick replacement parts). This video is a pretty honest recounting of many things going wrong.

The iPhone 6 and 7 are not meant to have wireless charging, but [Scotty’s] working with a friend named [Yeke] who created an aftermarket kit for this. The flexible PCB needs to be folded just right, and adhesive foam added (along with a magical incantation) to make it work. That’s because the add-on is a no-solder job. Above you can see it cleverly encircles one of the mating connectors and relies on mechanical pressure to make contact with the legs of that connector. Neat!

In the second half of the video [Scotty] meets up with [Yeke] to discuss the design itself. We find it interesting that [Yeke] considers his work a DIY item. Perhaps it’s merely lost in translation, but perhaps [Yeke’s] proximity to multiple flexible PCB manufacturers makes him feel that this is more like playing around for fun than product design. Any way you look at it, the ability to design something that will fit inside that crazy-tight iPhone case is both impressive and mesmerizing. Having seen some of the inductive charging hacks over the years, this is by far the cleanest way to go about it.

We caught up with [Scotty] during last year’s Supercon. We may not be able to drop everything and move to Shenzhen, but hearing about the experience is just enough to keep us wanting to!

Continue reading “You Can Add Wireless Charging To IPhone… Kinda”

Underwater VR Offers Zero Gravity On A Budget

Someday Elon Musk might manage to pack enough of us lowly serfs into one of his super rockets that we can actually afford a ticket to space, but until then our options for experiencing weightlessness are pretty limited. Even if you’ll settle for a ride on one of the so-called “Vomit Comet” reduced-gravity planes, you’ll have to surrender a decent chunk of change, and as the name implies, potentially your lunch as well. Is there no recourse for the hacker that wants to get a taste of the astronaut experience without a NASA-sized budget?

Well, if you’re willing to get wet, [spiritplumber] might have the answer for you. Using a few 3D printed components he’s designed, it’s possible to use Google Cardboard compatible virtual reality software from the comfort of your own pool. With Cardboard providing the visuals and the water keeping you buoyant, the end result is something not entirely unlike weightlessly flying around virtual environments.

To construct his underwater VR headset, [spiritplumber] uses a number of off-the-shelf products. The main “Cardboard” headset itself is the common plastic style that you can probably find in the clearance section of whatever Big Box retailer is convenient for you, and the waterproof bag that holds the phone can be obtained cheaply online. You’ll also need a pair of swimmers goggles to keep water from rudely interrupting your wide-eyed wonderment. As for the custom printed parts, a frame keeps the waterproof bag from pressing against the screen while submerged, and a large spacer is required to get the phone at the appropriate distance from the operator’s eyes.

To put his creation to the test, [spiritplumber] loads up a VR rendition of NASA’s Neutral Buoyancy Laboratory, where astronauts experience a near-weightless environment underwater. All that’s left to complete the experience is a DIY scuba regulator so you can stay submerged. Though at that point we wouldn’t be surprised if a passerby confuses your DIY space simulator for an elaborate suicide attempt.

Continue reading “Underwater VR Offers Zero Gravity On A Budget”

Old Phone, New Remote Switch

With mobile phones now ubiquitous for the masses in much of the world for over two decades, something a lot of readers will be familiar with is a drawer full of their past devices. Alongside the older smartphone you’ll have a couple of feature phones, and probably at the bottom a Nokia candybar or a Motorola flip phone. There have been various attempts over the years to make use of the computing power the more recent ones contain through using their smartphone operating systems, but the older devices remain relatively useless.

[Vishwasnavada] has a neat plan though, using an ancient phone as a remote trigger device, by interfacing it with an Arduino. There are many ways this could be achieved depending on the model of the phone in question, but one thing common to nearly all devices is a vibration motor. Removing the motor and taking its power line to a GPIO allows the Arduino to sense when the phone is ringing. The idea then is that a call can be placed to the phone which is not picked up, but because it triggers the vibration motor it can be used to make the microcontroller do something remotely. A hack with limited capabilities then, but one that is cheap and simple, uses a recycled device, and should work almost anywhere populated on the planet given the global reach of 2G networks.

This isn’t the first respin of a classic Nokia we’ve brought you, they will also talk data.

Open Hardware Takes Charge In Papua New Guinea

You probably don’t think much about charging your phone. Just find an outlet, plug it in, and wait a while. Can’t find a cable or wall wart? A rainbow of cheap, candy-colored options awaits you down at the brightly-lit corner drugstore.

This scenario couldn’t be further from reality in third world countries like Papua New Guinea, where people living in remote jungles have cell phone coverage, but have to charge their phones by hooking them up directly to cheap solar panels and old car batteries.

[Marius Taciuc] wants to change all of that. At the suggestion of his friend [Brian], he designed an intermediary device that takes any input and converts it to clean 5 volts with a low-cost, reliable buck converter. The inputs are a pair of alligator clips, so they can be connected to car battery terminals, bare-wire solar panel leads, or 9V connectors.

Mobile phones mean so much to the people of Papua New Guinea. They’re like a first-world care package of news, medical advice, and education. At night, they become simple, valuable lanterns. But these dirty charging hacks often lead to house fires. Someone will leave their phone to charge in the morning when they go off to hunt, and come home to a pile of ashes.

This is an open, simple device that could ultimately save someone’s life, and it’s exactly the type of project we’re looking for. [Marius] hopes to see these all over eBay someday, and so do we. Charge past the break to see [Marius] discuss the Brian Box and the people he’s trying to help.

Continue reading “Open Hardware Takes Charge In Papua New Guinea”

A Li-Ion Booster Pack, Done Right

We’re all used to battery booster packs containing a Li-ion or Li-poly cell and a little inverter circuit, they are a standard part of 21st century daily survival for those moments when smartphone battery lives don’t perform as advertised. But how many of us have considered what goes into them, and further how many of us have sought to produce the best one possible rather than a unit built at the lowest price?

It’s a course [Peter6960] has followed, producing a PCB that sits on the back of an 18650 cell holder. It follows the work of [GreatScott] in particular in its use of the TP4056 charger, MT3608 boost converter, and FS312F protection ICs. Many commercial modules omit any protection circuit, and the FS312F is of particular interest because it has a low 2.9V cut-off voltage that should lengthen the life of the cell. Files for the PCB can be found in a zip file hosted on Google Drive.

You might think that there was nothing new that could be learned about a Li-ion battery booster, but it’s always worth a look at a well-executed piece of work. We noticed he refers to Li-poly cells while using what appears to be a Li-ion 18650 cell. Most likely this is merely an oversight.

There is a lot to know about the characteristics and safety of the lithium-chemistry rechargeables, you may find [Sean Boyce]’s article on the subject to be an interesting read.

Unlock & Talk: Open Source Bootloader & Modem

During the early years of cell phones, lifespan was mainly limited by hardware (buttons wearing out, dropping phones, or water damage), software is a primary reason that phones are replaced today. Upgrades are often prompted by dissatisfaction with a slow phone, or manufacturers simply stopping updates to phone software after a few years at best. [Oliver Smith] and the postmarketOS project are working to fix the update problem, and have begun making progress on loading custom software onto cellphone processors and controlling their cellular modems. Continue reading “Unlock & Talk: Open Source Bootloader & Modem”

Why Won’t This Darn Thing Charge?

What is more fun than plugging in your phone and coming back to find your battery on empty? Stepping on a LEGO block with bare feet or arriving hungry at a restaurant after closing probably qualify. [Alex Sidorenko] won’t clean your floors or order you a pizza, but he can help you understand why cheap chargers won’t always power expensive devices. He also shows how to build an adapter to make them work despite themselves.

The cheapest smart device chargers take electricity from your home or car and convert it to five volts of direct current. That voltage sits on the power rails of a USB socket until you plug in a cable. If you’re fortunate, you might get a measly fuse.

Smart device manufacturers don’t make money when you buy an off-brand charger, and they can’t speak to the current protection of them, so they started to add features on their own chargers to protect their components and profit margins. In the case of dedicated chargers, a simple resistor across the data lines tells your phone it is acceptable power. Other devices are more finicky, but [Alex Sidorenko] shows how they work and provides Eagle files to build whatever flavor you want. Just be positive that your power supply is worthy of the reliability these boards promise to the device.

Now you know why connecting a homemade benchtop power supply to a USB cable seems good on paper but doesn’t always get the job done. Always be safe when you make your own power supplies.