Rocket Bullets: The Flame And Fizzle Of The Gyrojet

In the 1950’s and 60’s, the world had rocket fever. Humankind was taking its first steps into space and had sights on the moon. Kids could build rockets at the kitchen table and launch them in the schoolyard. On the darker side, the arms race was well underway with the US and USSR trying to close the fictional missile gap.

All around the world, engineers were trying to do new things with rockets. Among these were Robert Mainhardt and Arthur T. Biehl, who thought rockets could be useful as small arms. Together they formed MBA (short for Mainhardt and Biehl Associates), with an eye toward future weapons – – specifically rocket bullets.

Continue reading “Rocket Bullets: The Flame And Fizzle Of The Gyrojet”

Pinball Wizard Hacks Table For Tommy Stage Show

Ever since he was a young hacker
[Mark Gibson] has messed with the silver ball.
From Soho down to Denver
he must have fixed them all.
But we ain’t seen anything like this
in any amusement hall.
That darn devious hacker
sure hacks a mean pinball.

He hacks it like an expert,
Becomes part of the machine
Automating all the bumpers
Always wiring clean
His table plays by automation,
And radio control for all
That darn devious hacker
sure hacks a mean pinball.

Continue reading “Pinball Wizard Hacks Table For Tommy Stage Show”

A 38-Year-Old Vocoder Project

It is hard to remember that scant decades ago, electronic magazines — the pre-Internet equivalent of blogs — featured lots of audio circuits based on analog processing. Music synthesizers were popular for example, because microcontrollers were expensive and unable to perform digital signal processing tasks in the way you would use them today. [Julian] has been trying to build a vocoder from that era from ETI magazine. Along the way, he’s making videos documenting what he’s found and how’s he resolving issues.

The circuit generates levels for particular input frequencies. It does so with a two-op-amp bandpass filter, a two-op-amp rectifier, and then an op-amp lowpass filter. That’s five op-amps for each band (there are 14 bands) plus the support circuitry. And that’s just the input section! Today, you would simply sample the signal and do a fast Fourier transform (FFT) to get the same kind of data.

Continue reading “A 38-Year-Old Vocoder Project”

Build Your Own Rowing Machine, Now With Digital Readout!

An ergometer is a fancy fitness word for a rowing machine, a device which can be used to work out the muscles used in rowing. It’s an excellent cardio workout that can also build upper body strength, and resistance can be varied depending on the individual’s fitness goals. But perhaps you need to measure your workout to see your progress – in which case, [Dave]’s instrumentation package might be right up your alley.

The basic mechanical build involves a wooden frame, fitted with a rowing setup built around a modified bicycle wheel. The wheel has vanes attached, made of what appears to be cut sections of PVC pipe. These act essentially as dampers, using the air to create the resistance for the rower to work against.

The wheel is instrumented with a chopper wheel and an IR optical switch, which measures the rotational speed of the wheel during rowing. This signal is fed into an ATMega328 which runs the calculations on the rower’s performance. It’s all fed to a Nokia 5110 screen for display, which makes a lovely throwback for those that remember the brick fondly.

[Dave] touches not only on the electronic aspects of the build, but also does an excellent job of breaking down the mathematics behind rowing performance. It’s a great resource that builds on top of the excellent work by the OpenErgo project.

If we’ve whet your thirst for exercise machine hacks, you’d better check out this treadmill to belt grinder mod.

Furniture And Motors Make A Strange Bedfellow

Beds! They don’t move around enough, so the young people say. They need more motors, more horsepower, more self-driving smarts – right? Honestly, we’re not sure, but if that’s the question being asked, [randofo] has the answer.

Aptly named, Bedfellow is an art project that sought to create a bed that could explore and socialise with occupants aboard. The core principle was not just to create a bed that could move under its own power, but one that could intelligently drive around and avoid obstacles, too. This is achieved through the use of ultrasonic sensors, with an Arduino Mega as the brains. The bed chooses a random direction in which to move, checking for obstacles on the way. It’s pretty basic as far as “self-driving” technology goes, but it gets the job done.

Far from being a lightweight artistic statement, the bed has some serious performance credentials. The drivetrain is a couple of 4 horsepower DC motors with speed controllers cribbed from a golf cart. These are fed through a 20:1 gear reduction to boost torque and avoid the bed moving too quickly. [Randofo] reports it can comfortably haul 12 people without slowing down, and we don’t doubt it. With that much power, your average flatback bed would be ripped to pieces, but never fear for this one – there’s plenty of heavy engineering holding it together.

It’s refreshing to see an art project executed with both elegant aesthetics and brutally powerful hardware. Sure, it might not be much good for sleeping unless you live in a loft with a concrete floor, but hey – they’re awfully popular these days. Now all it needs are some ground effects.

Heartwatch Monitors Your Ticker

The heart! A pump of the most fantastical kind, it is capable of operating for decades without rest. It’s responsible for supplying vital oxygen to the body’s subsystems, and can be readily monitored with modern technology. [Dave Vernooy] wanted to build a watch that could take heartrate and blood oxygen measurements – so he did.

Named Heartwatch, the device is a DIY smartwatch build with a bunch of exciting features. Heart monitoring is taken care of by the MAX30102 sensor which integrates all the hardware to sense heart rate and oxygen saturation into a single tiny plastic package. There’s then an assortment of accelerometers, gyros and even a color LCD to display all the wonderful information.

It’s all wrapped up in a 3D printed case, with an ATMEGA1284 running the show. The project just goes to show how much can be achieved with an 8-bit processor – there’s not always a need to run a high-powered ARM chip for an embedded project.

There are a fair few DIY smartwatch builds out there – like this classy unit with an OLED screen.

The BBC Computer Literacy Project From The 1980s Is Yours To Browse

In the early 1980s there was growing public awareness that the microcomputer revolution would have a significant effect on everybody’s lives, and there was a brief period in which anything remotely connected with a computer attracted an air of glamour and sophistication. Broadcasters wanted to get in on the act, and produced glowing documentaries on the new technology, enthusiastically crystal-ball-gazing as they did so.

In the UK, the public service BBC broadcaster produced a brace of series’ over the decade probing all corners of the subject as part of the same Computer Literacy Project that gave us Acorn’s BBC Micro, and we are lucky enough that they’ve put them all online so that we can watch them (again, in some cases, if a Hackaday scribe can get away with revealing her age).

You can see famous shows such as the moment when the presenters experienced a live on-air hack while demonstrating an early online service, but most of it is a fascinating contemporary look at the computers we now enthuse over as retro devices. Will the MSX sweep all before it, for example? (It didn’t).

They seem very dated now with their 8-bit micros (if not just for the word “micro”), synth music, and cheesy graphics. But what does come across is the air of optimism, this was the future, and it was packaged not as a threat, but as a good place to be. Take a look, but make sure you have plenty of time. You may spend a while in front of the screen.

We’ve mentioned int he past another spin-off from the Computer Literacy Project, the Domesday Project.

Thanks [Darren Grant] for the tip.