Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things

As the Internet of Things became a mainstream reality, it raised an interesting point about connectivity. We quickly learned it wasn’t ideal to have every light bulb, toaster, and kettle buzzing away on our main WiFi networks. Nor was it practical to sign up for a cellular data plan for every tracker tag or remote sensor we wanted to use.

To solve this issue, various tech companies have developed their own low-power mesh networking solutions. Amazon’s Sidewalk network is one of the widest spread in the US. Now, it’s opening it up for wider use beyond its own products, and you can get in on the action.

Continue reading “Your Guide To Using Amazon’s Sidewalk Network For The Internet Of Things”

Smoke Some Weeds: Lasers Could Make Herbicide Obsolete

We’ve all tangled with unwelcome plant life at one point or another. Whether crabgrass infested your lawn, or you were put on weeding duty in your grandfather’s rose patch, you’ll know they’re a pain to remove, and a pain to prevent. For farmers, just imagine the same problem, but scaled up to cover thousands of acres.

Dealing with weeds typically involves harsh chemicals or excessive manual labor. Lasers could prove to be a new tool in the fight against this scourge, however, as covered by the BBC.

Continue reading “Smoke Some Weeds: Lasers Could Make Herbicide Obsolete”

Warmer Ice Cream?

What if you could tweak the recipe on ice cream to keep it frozen at higher temperatures? The idea comes from massive conglomerate Unilever. Among other things, the brand owns a wide variety of ice cream brands, from Ben & Jerry’s to the Magnum and Cornetto lines. Instead of running freezers at the industry standard of -18 °C (0°F), the company is experimenting with upping the temperature to -12 °C (10 °F) instead.

First off, you’d save a lot of electricity. Thanks to the way the industry works, the company actually owns the vast majority of the three million or so display freezers that are used to sell its stock to customers. Running at a higher temperature could slash the freezer’s energy use by 20% to 30%, according to the company’s calculations. The company also estimates that the energy used by these freezers makes up around 10% of its total greenhouse gas footprint, so it’s better for the environment too.

Of course, there’s savvy commercial reasons behind the idea. Unilever had noticed its ice cream sales dropping in 2022. The company believes this was in part due to retailers unplugging their freezers earlier than usual as winter approached, due to high energy bills. If the company’s freezers aren’t humming, they’re doing less business. If shaving down the freezer’s energy use helps retailers keep them plugged in and the lights on, that’s a net bonus to the company’s bottom line. It could also make their freezers unhospitable places for rival products, giving them an edge in the marketplace.

But this is all business intrigue. Let’s instead take a deeper look at ice cream.

Continue reading “Warmer Ice Cream?”

PUF Away For Hardware Fingerprinting

Despite the rigorous process controls for factories, anyone who has worked on hardware can tell you that parts may look identical but are not the same. Everything from silicon defects to microscopic variations in materials can cause profoundly head-scratching effects. Perhaps one particular unit heats up faster or locks up when executing a specific sequence of instructions and we throw our hands up, saying it’s just a fact of life. But what if instead of rejecting differences that fall outside a narrow range, we could exploit those tiny differences?

This is where physically unclonable functions (PUF) come in. A PUF is a bit of hardware that returns a value given an input, but each bit of hardware has different results despite being the same design. This often relies on silicon microstructure imperfections. Even physically uncapping the device and inspecting it, it would be incredibly difficult to reproduce the same imperfections exactly. PUFs should be like the ideal version of a fingerprint: unique and unforgeable.

Because they depend on manufacturing artifacts, there is a certain unpredictability, and deciding just what features to look at is crucial. The PUF needs to be deterministic and produce the same value for a given specific input. This means that temperature, age, power supply fluctuations, and radiation all cause variations and need to be hardened against. Several techniques such as voting, error correction, or fuzzy extraction are used but each comes with trade-offs regarding power and space requirements. Many of the fluctuations such as aging and temperature are linear or well-understood and can be easily compensated for.

Broadly speaking, there are two types of PUFs: weak and strong. Weak offers only a few responses and are focused on key generation. The key is then fed into more traditional cryptography, which means it needs to produce exactly the same output every time. Strong PUFs have exponential Challenge-Response Pairs and are used for authenticating. While strong PUFs still have some error-correcting they might be queried fifty times and it has to pass at least 95% of the queries to be considered authenticated, allowing for some error. Continue reading “PUF Away For Hardware Fingerprinting”

Share Your Projects: Take Pictures

Information is diesel for a hacker’s engine, and it’s fascinating how much can happen when you share what you’re working on. It could be a pretty simple journey – say, you record a video showing you fixing your broken headphones, highlighting a particular trick that works well for you. Someone will see it as an entire collection of information – “if my headphones are broken, the process of fixing them looks like this, and these are the tools I might need”. For a newcomer, you might be leading them to an eye-opening discovery – “if my headphones are broken, it is possible to fix them”.

There’s a few hundred different ways that different hackers use for project information sharing – and my bet is that talking through them will help everyone involved share better and easier. Let’s start talking about pictures – perhaps, the most powerful tool in a hacker’s arsenal. I’ll tell you about all the picture-taking hacks and guidelines I’ve found, go into subjects like picture habits and simple tricks, and even tell you what makes Hackaday writers swoon!

To start with, here’s a picture of someone hotwiring a car. This one picture conveys an entire story, and a strong one.

Continue reading “Share Your Projects: Take Pictures”

If They Fire The Nukes, Will They Even Work?

2022 was a harrowing year in a long line of harrowing years. A brutal war in Europe raised the prospect of nuclear war as the leaders behind the invasion rattled sabers and made thinly veiled threats to use weapons of mass destruction. And all this as we’re still working our way through the fallout of a global pandemic.

Those hot-headed threats raise an interesting question, however. Decades have passed since either Russia or the United States ran a live nuclear weapons test. Given that, would the nukes even work if they were fired in anger?

Continue reading “If They Fire The Nukes, Will They Even Work?”

Feeling The Heat: Railway Defect Detection

On the technology spectrum, railroads would certainly seem to skew toward the brutally simplistic side of things. A couple of strips of steel, some wooden ties and gravel ballast to keep everything in place, some rolling stock with flanged wheels on fixed axles, and you’ve got the basics that have been moving freight and passengers since at least the 18th century.

But that basic simplicity belies the true complexity of a railway, where even just keep keeping the trains on the track can be a daunting task. The forces that a fully loaded train can exert on not only the tracks but on itself are hard to get your head around, and the potential for disaster is often only a failed component away. This became painfully evident with the recent Norfolk Southern derailment in East Palestine, Ohio, which resulted in a hazardous materials incident the likes of which no community is ready to deal with.

Given the forces involved, keeping trains on the straight and narrow is no mean feat, and railway designers have come up with a web of sensors and systems to help them with the task of keeping an eye on what’s going on with the rolling stock of a train. Let’s take a look at some of the interesting engineering behind these wayside defect detectors.

Continue reading “Feeling The Heat: Railway Defect Detection”