A 50W Speaker Made Of Light Bulbs

When we think of a speaker, we are likely to imagine a paper cone with a coil of wire somewhere at the bottom of it suspended in a magnetic field. It’s a hundred-plus-year-old technology that has been nearly perfected. The moving coil is not however the only means of turning an electrical current into a sound. A number of components will make a sound when exposed to audio, including to the surprise of [Eric], the humble incandescent light bulb. He discovered when making an addressable driver for them that he could hear the PWM frequency when they lit up, so he set about harnessing the effect for use as a speaker.

Using an ESP32 board and with a few false starts due to cheap components, he started with MIDI files and ended up with PWM frequencies. It’s an interesting journey into creating multiple PWM channels from an ESP32, and he details some of his problems along the way. The result is the set of singing light bulbs that can be seen in the video below the break, which he freely admits is probably the most awful 50 W speaker that he could have made. That however is not the point of such an experiment, and we applaud him for doing it.

For more MIDI-based tomfoolery, take a look at the PCB Tesla coil.

Continue reading “A 50W Speaker Made Of Light Bulbs”

Turning A MicroKORG Into A MicroKORG S With This Speaker Mod

When [Michael Wessel] bought his MicroKORG synthesizer/vocoder, he felt less than amused when two years later the MicroKORG S was released, with the ‘S’ standing for ‘sound’, apparently, for the 2+1 speaker system that was added to it. Undeterred, [Michael] figured out that both synthesizers are similar enough that one could likely add a similar speaker system to the original MicroKORG.

The similarities between the two products become apparent when one compares the original with its successor, with the latter seemingly mostly adding said speakers and more presets, along with a snazzy new exterior. (Although the 1970s styling of the original may have more fans.)  As the embedded video shows, this mod is fairly clean.

At the core of this mod is a PAM8403-based class D amplifier board. The PAM8403 is a 3 W audio amplifier, originally produced by Power Analog Microelectronics (now Diodes). While not an amazing amplifier, it lends itself well for battery-powered applications like the MicroKORG. Rounding out the build is a 7805 linear regulator to get 5 V for the PAM8403, a few filter capacitors, a switch to turn the speakers on/off, and of course the speakers.

Although there’s quite a bit of space in the enclosure, most speakers tend to be large enough that this can be a bit of a squeeze. [Michael] found some low-profile 20 W full-range speakers that seem to work well for this purpose. To finish wiring this up, all it takes is a hole saw and a way to get the audio output from the MicroKORG.

In this mod, [Michael] opted to get the audio from the output jack on the back, but for a cleaner result it probably could be wired straight into the on-board header.

Continue reading “Turning A MicroKORG Into A MicroKORG S With This Speaker Mod”

How Did They Get Sampled Sounds From An SN76489 8-bit Sound Chip?

If you were lucky and had well-off parents in the early 1980s, your home computer had a sound chip on board and could make music. There were a variety of chips on the market that combined in some form the tone generators and noise sources of a synthesiser, but without the digital-to-analogue converters of later sound chips designed for sampled audio. They gave birth to chiptune music, but that was all they were made to do. The essence of a hack lies in making something perform in a way it was never intended to, and some game developers for the Acorn BBC Micro had its SN76489 producing sampled audio when it should never have been possible. How did they do it? It’s a topic [Chris Evans] has investigated thoroughly, and his write-up makes for a fascinating explanation.

So, how can a set of audio tone generators be turned into a sampled audio player, and how can it be done when the CPU is a relatively puny 6502? There’s no processor bandwidth for clever Fourier transform tricks, and 1980s tech isn’t set up for high data bandwidths. The answer lies in making best use of the controls the chip does offer, namely frequency and volume of a tone. A single cycle of a tone can be given a volume, and thus can be treated as a single sample of an unintended DAC. By using a tone frequency well above the audio range a suitable sample frequency can be found, and thus an audio stream can be played. The write-up has links to some examples in an emulator, and while they’re hardly hi-fi they’re better than you might expect for the hardware involved. Still, even at that they don’t approach this amazing 48kHz playback on a Commodore 64.

Header: SN76489, on a Colecovision console motherboard. Evan-Amos / Public domain.

Pulling Data From News Feed Telemetry

We are used to seeing shots from TV news helicopters every day, they are part of the backdrop to life in the 21st century. But so often we hear them overlaid with studio commentary, so it’s interesting to hear that their raw audio contains telemetry. It caught the attention of [proto17], who took some audio pulled from a news helicopter video and subjected it to a thorough investigation to retrieve the data.

The write-up is at a very in-depth level, and while there’s an admission that some of the steps could have been performed more easily with ready-made tools, its point is to go through all steps at a low level. So the action largely takes place in GNU Radio, in which we see the process of identifying the signal and shifting it downwards in frequency before deducing its baud rate to retrieve its contents. The story’s not over though, because we then delve into some ASCII tricks to identify the packet frames, before finally retrieving the data itself. It still doesn’t tell you what the data contains, but it’s a fascinating process getting there nonetheless.

It’s easy to forget that GNU Radio has signal processing capabilities far beyond radio, but it was the subject of a fascinating Superconference talk. We even jumped on the bandwagon in the non-foolish part of our April Fool this year.

Homebrew Binaural Microphone Lets You Listen Like A Human

We humans may not have superpowers, but the sensor suite we have is still pretty impressive. We have binocular vision that autofocuses and can detect a single photon, skin studded with sensors for touch, heat, and pain, and a sense of smell that can detect chemicals down to the parts per trillion range. Our sense of hearing is pretty powerful, too, allowing us to not only hear sounds over a 140 dB range, but also to locate its source with a fair degree of precision, thanks to the pair of ears on our heads.

Recreating that binaural audio capture ability is the idea behind this homebrew 3D microphone. Commercially available dummy head microphones are firmly out of the price range of [LeoMakes] and most mortals, so his was built on a budget from a foam mannequin head and precast silicone rubber ears, which you can buy off the shelf, because of course you can.

Attached to the sides of the foam head once it got the [Van Gogh] treatment, the ears funnel sound to tiny electret cartridge microphones. [Leo] learned the hard way that these little capsule mics can’t use the 48-volt phantom power that’s traditionally pumped up the cable to studio microphones; he fixed that problem with a resistor in parallel with the mic leads. A filtering capacitor, an RC network between the cold line and ground on the balanced audio line, and a shield cleverly fashioned from desoldering braid took care of the RF noise problem.

The video after the break shows the build and test results, which are pretty convincing with headphones on. If you want to build your own but need to learn more about balanced audio and phantom power, we’ve got a short primer on the topic that might help.

Continue reading “Homebrew Binaural Microphone Lets You Listen Like A Human”

Drumming A Beat On A Hundred-Year-Old Typewriter

We have seen a fair share of unusual items being turned into musical instruments. Luckily, with a little bit of hacking it is possible to turn almost anything into a MIDI controller. [William Sun Petrus] just converted a 1920s typewriter into a drum machine and delivers a hell of a live performance on it.

The build is rather simple, all [William Sun Petrus] needed was an Arduino Mega and lots of wires to convert a hundred-year-old Remington typewriter into a MIDI controller. Whenever a key is pressed the hammer hits a metal plate at the center of the typewriter and closes the contact between one of the Arduino’s IO pins and the 5 V rail like a regular push button. The Arduino code is based on the MIDI library sending commands to a PC which is running Hairless MIDI and Ableton. As sort of a gimmick, [William Sun Petrus] included an LCD screen which shows a line from Green Eggs and Ham by Dr. Seuss every time a key is pressed.

Interestingly, the latency due to the hammer’s travel time does not disturb [William Sun Petrus’] live play. To calm the skeptics in the comments he also released an unedited version of the video to prove that the performance is real and an instructional video on how to play his beat note by note.

Other unusual MIDI controllers include a bandoneon accordion or this English concertina.

Video after the break.

Continue reading “Drumming A Beat On A Hundred-Year-Old Typewriter”

Ultrasonic Sound Gun Precisely Aims Your Music

When listening to music you sometimes cannot avoid the situation where other people get annoyed because they feel it disrupts their important doings or they do not share your taste in avant-garde doom metal. Of course one could just use headphones. But a hackier way would be to build a parametric speaker that focuses soundwaves into a narrow beam like [Shane] did with this ultrasonic sound gun.

As the directivity of a soundwave depends on the size of the source and its frequency, a directed beam can practically only be achieved with ultrasound. Even though we are not able to perceive frequencies above ~20 kHz, the nonlinear properties of air make it possible to hear the audio modulated onto an ultrasonic carrier signal. For his sound gun [Shane] was inspired by another parametric speaker project. It took him some time to get the 555 timer circuit oscillating at the right frequency and he fried a cheap Bluetooth audio module while trying to increase the output volume but in the end, he managed to get everything working. As the project name suggests, he also 3D printed a gun-shaped enclosure. The video below shows that the sound from the gun behaves really similar to a beam of light and can, for example, be bounced off other objects.

If you are looking for other inspiration there is a whole list of cool ultrasonic projects from distance sensors to acoustic levitation.

Continue reading “Ultrasonic Sound Gun Precisely Aims Your Music”