Laptop Motherboard? Let’s Boot And Tinker

Last time, I’ve shared my experience on why you might want to consider a laptop motherboard for a project of yours, and noted some things you might want to keep in mind if buying one for a project. Now, let’s go through the practical considerations!

Making It Boot

Usually, when you plug some RAM and a charger into a board, then press the power button, your board should boot up and eventually show the BIOS on the screen. However, there will be some caveats – it’s very firmware-dependent. Let me walk you through some confusing situations you might encounter.

If the board was unpowered for a while, first boot might take longer – or it might power on immediately after a charger has been plugged in, and then, possibly, power off. A bit of erratic behaviour is okay, since boards might need to do memory training, or recover after having lost some CMOS settings. Speaking of those, some boards will not boot without a CMOS battery attached, and some will go through the usual ‘settings lost’ sequence. Sometimes, the battery will be on a daughterboard, other times, especially with new boards, there will be no CR2032 in sight and the board will rely on the main battery to provide CMOS settings saving functions – in such case, if you don’t use the battery, expect the first boot to take longer, at least. Overall, however, pressing the power switch will cause the board to boot. Continue reading “Laptop Motherboard? Let’s Boot And Tinker”

The Future Of RISC-V And The VisionFive 2 Single Board Computer

We’ve been following the open, royalty-free RISC-V ISA for a while. At first we read the specs, and then we saw RISC-V cores in microcontrollers, but now there’s a new board that offers enough processing power at a low enough price point to really be interesting in a single board computer. The VisionFive 2 ran a successful Kickstarter back in September 2022, and I’ve finally received a unit with 8 GB of ram. And it works! The JH7110 won’t outperform a modern desktop, or even a Raspberry Pi 4, but it’s good enough to run a desktop environment, browse the web, and test software.

And that’s sort of a big deal, because the RISC-V architecture is starting to show up in lots of places. The challenge has been getting real hardware that’s powerful enough to run Linux and compile software on, that doesn’t cost an arm and a leg. If ARM is an alternative architecture, then RISC-V is still an experimental one, and that is an issue when trying to use the VF2. That’s a theme we’ll repeat a few times, but the thing to remember here is that getting more devices in the wild is the first step to fixing things. Continue reading “The Future Of RISC-V And The VisionFive 2 Single Board Computer”

Supercon 2022: Michael Whiteley Saves The Badge

Michael Whiteley (aka [compukidmike]) is a badgelife celebrity. Together, he and his wife Katie make up MK Factor. They have created some of the most popular electronic conference badges. Of course, even experts make mistakes and run into challenges when they dare to push the envelope of technology and delivery schedules. In his Supercon 2022 talk, There’s No Rev 2: When Badgelife Goes Wrong, Mike shares details from some of his worst badge snafus and also how he managed to gracefully pull them back from the edge of disaster.

Living the Badgelife

Attendees at the world’s largest hacker convention, DEF CON in Las Vegas, had already become accustomed to receiving and wearing very cool and novel admission tokens, more properly known as badges. Then in 2006, at DEF CON 14, everything changed. Designed by Joe Grand, the first electronic DEF CON badge was a circuit board featuring a tiny PIC microcontroller, two LEDs, and a single pushbutton. Badgelife was born.

DEF CON 30 Humans Sampling Board

Mike begins his war stories with one about the DEF CON 30 badge. This was a herculean project with 25,000 badges being produced on a short timeline in the ever-changing chaos of a semiconductor supply-chain meltdown. Even though many regard it as one of the best DEF CON badges ever made, the DC30 badge posed a number of challenges to its creators. Microcontrollers were in short supply during 2021 and 2022 forcing the badge team to keep an eye on component vendor supplies in order to snipe chips as soon as they appeared in stock. The DC30 badge was actually redesigned repeatedly as different microcontrollers fluctuated in and out of supply. Continue reading “Supercon 2022: Michael Whiteley Saves The Badge”

How Hard Could It Be To Get Millions Of Phone Bills Right?

It may be a foreign concept to anyone who has never paid a dime for a phone call over and above the monthly service charge, but phone calls were once very, VERY expensive — especially long-distance calls, which the phone company ungenerously defined as anything more than a few towns away. Woe betide the 70s teen trying to talk to out-of-town friends or carry on a romance with anyone but the guy or girl next door when that monthly phone bill came around; did anyone else try to intercept it from the mailbox before the parents could see it?

While it seems somewhat quaint now, being charged for phone calls was not only a big deal to the customers, but to the phone company itself. The Bell System, which would quickly become a multi-billion dollar enterprise, was built on the ability to accurately meter the use of their service and charge customers accordingly. Like any engineered system, it grew and changed over time, and it had to adapt to the technologies and economic forces at the time.

One of the most interesting phases of its development was the development of Automatic Message Accounting (AMA), which in a very real way paved the way for the wide-open, worldwide, too-cheap-to-meter phone service we enjoy today.

Continue reading “How Hard Could It Be To Get Millions Of Phone Bills Right?”

FOSDEM 2023: An Open-Source Conference, Literally

Every year, on the first weekend of February, a certain Brussels university campus livens up. There, you will find enthusiasts of open-source software and hardware alike, arriving from different corners of the world to meet up, talk, and listen. The reason they all meet there is the conference called FOSDEM, a long-standing open-source software conference which has been happening in Belgium since 2000. I’d like to tell you about FOSDEM because, when it comes to conferences, FOSDEM is one of a kind.

FOSDEM is organized in alignment with open-source principles, which is to say, it reminds me of an open-source project itself. The conference is volunteer-driven, with a core of staff responsible for crucial tasks – yet, everyone can and is encouraged to contribute. Just like a large open-source effort, it’s supported by university and company contributions, but there’s no admission fees for participants – for a conference, this means you don’t have to buy a ticket to attend. Last but definitely not least, what makes FOSDEM shine is the community that it creates.

FOSDEM’s focus is open software – yet, for hackers of the hardware world, you will find a strong hardware component to participate in, since a great number of FOSDEM visitors are either interested in hardware, or even develop hardware-related things day-to-day. It’s not just that our hardware can’t live without software, and vice-versa – here, you will meet plenty of pure software, a decent amount of pure hardware, and a lot of places where the two worlds are hard to distinguish. All in all, FOSDEM is no doubt part of hacker culture in Europe, and today, I will tell you about my experience of FOSDEM 2023. Continue reading “FOSDEM 2023: An Open-Source Conference, Literally”

Repurposing Old Smartphones: When Reusing Makes More Sense Than Recycling

When looking at the specifications of smartphones that have been released over the past years, it’s remarkable to see how aspects like CPU cores, clockspeeds and GPU performance have improved during this time, with even new budget smartphones offering a lot of computing power, as well as a smattering of sensors. Perhaps even more remarkable is that of the approximately 1.5 billion smartphones sold each year, many will be discarded again after a mere two years of use. This seems rather wasteful, and a recent paper by Jennifer Switzer and colleagues proposes that a so-called Computational Carbon Intensity (CCI) metric should be used to determine when it makes more sense to recycle a device than to keep using it.

What complicates the decision of when it makes more sense to reuse than recycle is that there are many ways to define when a device is no longer ‘fit for purpose’. It could be argued that the average smartphone is still more than good enough after two years to be continued as a smartphone for another few years at least, or at least until the manufacturer stops supplying updates. Beyond the use as a smartphone, they’re still devices with a screen, WiFi connection and a capable processor, which should make it suitable for a myriad of roles.

Unfortunately, as we have seen with the disaster that was Samsung’s ‘upcycling’ concept a few years ago, or Google’s defunct Project Ara, as promising as the whole idea of ‘reuse, upcycle, recycle’ sounds, establishing an industry standard here is frustratingly complicated. Worse, over the years smartphones have become ever more sealed-up, glued-together devices that complicate the ‘reuse’ narrative.

Continue reading “Repurposing Old Smartphones: When Reusing Makes More Sense Than Recycling”

Laptop Motherboard? No, X86 Single-Board Computer!

Sometimes a Raspberry Pi will not cut it – especially nowadays, when the prices are high and the in-stock amounts are low. But if you look in your closet, you might find a decently-specced laptop with a broken screen or faulty hinges. Or perhaps someone you know is looking to get rid of a decent laptop with a shattered case. Electronics recycling or eBay, chances are you can score a laptop with at least some life left in it.

Let’s hack! I’d like to show you how a used laptop motherboard could be the heart of your project, and walk you through some specifics you will want to know.

And what a great deal it could be for your next project! Laptop motherboards can help bring a wide variety of your Linux- and Windows-powered projects to life, in a way that even NUCs and specialized SBCs often can’t do. They’re way cheaper, way more diverse, and basically omnipresent. The CPU can pack a punch, and as a rule PCIe, USB3, and SATA ports are easily accessible with no nonsense like USB-throttled Ethernet ports.

Continue reading “Laptop Motherboard? No, X86 Single-Board Computer!”