Laser Scanner Upgraded To Use PCB Motor

[Rik]’s Hexastorm laser scanner project originally used a discrete polygon mirror controller+motor module from Sharp to spin a prism. But the scanner head was a bit difficult to assemble and had a lot of messy wires. This has all been replaced by a single board featuring a PCB-printed motor, based on the work of [Carl Bugeja]. The results are promising so far — see video below the break.

Since the prism is not attached to anything, currently it will fall off if mounted in the intended vertical orientation. One of [Rik]’s next steps is to improve the mount’s design to constrain the spinning prism. The previous Sharp motor was specified to 21000 RPM, but was only driven to 2400 RPM in [Rik]’s first version. This new PCB motor spins at 2000 RPM in these tests, comparable to his previous experiments ( we’re not sure about the maximum RPM ).

See our original writeup from 2019 to review the goals of this project, and be sure to checkout details and documentation on the Hexastorm project page. To learn more about PCB motors, read our article about [Carl]’s first design and visit his Hackaday.io page. Thanks to [Jonathan Beri] for the tip.

Continue reading “Laser Scanner Upgraded To Use PCB Motor”

Drilling Glass With Femtosecond Lasers Just Got Even Better

Glass! It’s a finicky thing. Strong as hell, yet chip it and glance at it the wrong way, and you’re left with a bunch of sharp rubbish. It’s at once adored for its clarity and smoothness, and decried for how temperamental it can be in the case of shock, whether mechanical, thermal, or otherwise.

If you’ve ever tried to drill glass, you’ll know it’s a tough errand. To do so without cracking it is about as likely as winning the lottery on Mars. Even lasers aren’t great at it. However, a research team from France has developed a new technique that uses femtosecond lasers to drill microscopic holes in glass with a minimum of tapering and no cracking! Brilliant, no?
Continue reading “Drilling Glass With Femtosecond Lasers Just Got Even Better”

Two goniometers sit on a table. One is an open wooden box with a long piece of plywood along the bottom. A laser distance finder rests on the front edge and a printed angle scale has been attached to the back side of the box. To the right of this box is a much smaller goniometer made from an orange pipe cap with a small strip of paper serving as the angle scale inside the interior edge. It is attached to a wooden handle that looks vaguely like a V. A laser pointer can be inserted from the bottom where a hole has been drilled through the wood.

Goniometer Gives You An Edge At Knife Sharpening

Sometimes you absolutely, positively need to know the angle of the cutting edge on a knife. When you do, the best tool for the job is a laser goniometer, and [Felix Immler] shows us three different ways to build one. (YouTube)

The underlying principle of all three of these builds is to project reflected laser light off a knife blade onto a scale going from 0-45˚. [Immler] shows a basic demonstration of this concept with a hinge toward the beginning of the video (after the break). Blades with multiple bevels will reflect light to each of the appropriate points on the scale.

The simplest version of the tool is a printed PDF scale attached to a wooden box with a hole for the blade to pass through. The next uses a large pipe end cap and a drilled-out piece of wood to create a more manageable measuring tool. Finally, [Immler] worked with a friend to design a 3D printed goniometer with differently-sized adapters to fit a variety of laser pointers.

Now that you’re ready to precisely sharpen your blades, why not sharpen this guacamole bot or try making your own knife from raw ore?

Continue reading “Goniometer Gives You An Edge At Knife Sharpening”

Turns Out, Lightning Can Strike Twice, With A Little Help

Few things are more impressive than a lighting strike. Lightning can carry millions of volts and while it can be amazing to watch, it is somewhat less amazing to be hit by lightning. Rockets and antennas often have complex lightning protection systems to try to coax the electricity to avoid striking where you don’t want it. However, a European consortium has announced they’ve used a very strong laser to redirect lightning in Switzerland. You can see a video below, but you might want to turn on the English closed captions.

Lightning accounts for as many as 24,000 deaths a year worldwide and untold amounts of property and equipment damage. Traditionally, your best bet for protection was not to be the tallest thing around. If the tallest thing around is a pointy metal rod in the ground, that’s even better. But this new technique could guide lightning to a specific ground point to have it avoid causing problems. Since lightning rods protect a circular area roughly the radius of their height, having a laser that can redirect beams to the area of a lightning rod would allow shorter rods to protect larger areas.

Continue reading “Turns Out, Lightning Can Strike Twice, With A Little Help”

DIY Fiber Laser Adds Metal Cutting To The Mix

Sadly, the usual CO2-powered suspects in the DIY laser cutter market are woefully incapable of cutting metal. Sure, they’ll cut the heck out of plywood and acrylic, and most will do a decent job at engraving metal. But cutting through a sheet of steel or aluminum requires a step up to much more powerful fiber laser cutters. True, the costs of such machines can be daunting, but not daunting enough for [Travis Mitchell], who has undertaken a DIY fiber laser cutter build that really caught our eye.

Right off the bat, a couple of things are worth noting here. First — and this should be obvious from the fountains of white-hot sparks in the video below — laser cutters are dangerous, and you should really know what you’re doing before tackling such a build. Second, just because [Travis] was able to cut costs considerably compared to a commercial fiber laser cutter doesn’t mean this build was cheap in absolute terms — he reports dropping about $15,000 so far, with considerable ongoing costs to operate the thing.

That said, there doesn’t appear to be anything about this build that anyone with some experience building CNC machines wouldn’t be able to tackle. The CNC side of this is pretty straightforward, although we note that the gantry, servos, and controller seem especially robust.

The laser itself is an off-the-shelf machine, a Raycus RFL-C1000 fiber laser and head that packs a 1,000-Watt punch. There’s also the required cooling system for the laser, and of course there’s an exhaust system to get rid of the nasty fumes.

All that stuff requires a considerable investment, but we were surprised to learn how much the consumables cost. [Travis] opted for bottled gas for the cutter’s gas assist system — low-pressure oxygen for carbon steel and high-pressure nitrogen for everything else. Refills are really pricey, in part because of the purity required, but since the proper compressor for the job is out of the budget for now, the tanks will have to do. And really, the thing cuts like a dream. Check out the cutting speed and precision in the video below.

This is but the first in a series of videos that will detail the build, and if [Travis] thought this would whet our appetites for more, he was right. We really haven’t seen many DIY fiber laser builds, but we have seen a teardown of a 200-kW fiber laser that might tickle your fancy.

Continue reading “DIY Fiber Laser Adds Metal Cutting To The Mix”

A White-Light Laser, On The Cheap

Lasers are known for the monochromatic nature of their light, so much so that you might never have thought there could be such a thing as a white laser. But in the weird world of physics, a lot of things that seem impossible aren’t really, as demonstrated by this dirt-cheap supercontinuum laser.

Of course, we’re not experts on lasers, and certainly not on non-linear optics, so we’ll rely on [Les Wright]’s video below to explain what’s going on here. Basically, a “supercontinuum” is just the conversion of a monochromatic source to a broader spectral bandwidth. It’s a non-linear optical process that’s usually accomplished with expensive bits of kit, like photonic crystal fibers, which are optical fibers with an array of tiny air-filled holes running down their lengths. Blast a high-intensity monochromatic laser down one end, and white light comes out the other end.

Such fibers are obviously fantastically expensive, so [Les] looked back in the literature and found that a simple silica glass single-mode fiber could be used to produce a supercontinuum. As luck would have it, he had been experimenting with telecom fibers recently, so along with a nitrogen laser he recovered from a Dumpster, he had pretty much everything he needed. The final setup uses the UV laser to pump a stilbene dye laser, which shoots a powerful pulse of 426 nanometer light into about 200 meters of fiber, and produces a gorgeous supercontinuum containing light from 430 nm to 670 nm — pretty much the entire visible spectrum.

It’s great to see projects like this that leverage low-cost, easy-to-source equipment to explore esoteric physics concepts.

Continue reading “A White-Light Laser, On The Cheap”

A persons handing holding a pile of generative, laser cut snowflake ornaments

Laser-Cutting A Flurry Of Generative Snowflakes

It’s the holiday season, and what better way to celebrate than to carve out some generative snowflakes on your laser cutter? [Bleeptrack] has developed a web-based tool that creates generative snowflake ornaments which can be exported to SVG files ready-made for laser or vinyl cutting.

True to their namesake, each generated snowflake ornament is (very likely to be) unique, with multiple layers created that can be stacked on top of each other. [Bleeptrack] has showcased a few realizations, using semitransparent paper sandwiched between two top layer cutouts, made out of wood or cardboard.

The snowflakes are a great balance of minimal design while still being beautiful and rich in detail. They can be easily produced on any laser cutter or vinyl cutter that you might have handy. Source code is available on GitHub for those wanting to dive into the details of the web tool. Cutting one of your own would make a perfect addition to a Neodriver ornament or a tiny DOOM playing ornament. Video after the break!

Continue reading “Laser-Cutting A Flurry Of Generative Snowflakes”