Hybrid Respirator Uses Repurposed Filters

With the coronavirus raging worldwide, 2020 has seen major shortages of personal protective equipment impact healthcare workers and individuals alike. This has led many to improvise their own solutions. One of the more complete offerings we’ve seen is this hybrid respirator build from [Ben Howard].

[Ben’s] build goes above and beyond the usual craft project masks. It uses a laser-cut chipboard frame to fit three HEPA filters, originally designed for the Roomba robotic vacuum cleaner. Two are used for exhalation, while one is used for inhalation. A small blower fan is installed with the intake filter, to provide mild positive pressure when breathing in. The assembly is wrapped up in fabric, using layers of spandex, fleece, and ripstop nylon to provide the best possible seal against the wearer’s face.

It’s a build that should appeal to those who want to breathe cleaner air and also protect others from exhaled particles that can spread respiratory viruses. We’ve seen all kind of masks hit the scene this year; the graphene-impregnated variety is one of the more interesting designs. Still, one can hope that future years lead to less reliance on such measures!

The Special Fridges Behind The COVID-19 Vaccine, Why It’s Surprisingly Difficult To Be That Cool

One of the big stories last week was the announcement of results from clinical trials that suggest a new COVID-19 vaccine developed through the joint effort of the American and German companies Pfizer and BioNTech is strongly effective in providing immunity from the virus. In the midst of what is for many countries the second spike of the global pandemic this news has been received with elation as well as becoming the subject of much political manoeuvring.

While we currently have two vaccine candidates with very positive testing results, one of the most interesting things for us is the need to keep doses of the Pfizer/BioNTech vaccine extremely cold until they are administered. Let’s dig into details of the refrigeration problem at hand.

Continue reading “The Special Fridges Behind The COVID-19 Vaccine, Why It’s Surprisingly Difficult To Be That Cool”

From Trash PPE To New PPE

As the coronavirus pandemic circles the world, a fact of daily life for millions of people has become the wearing of a face mask. Some people sport colorful fabric masks, but for many, this means the ubiquitous Chinese disposable mask. They have become the litter of our time, which as [blorgggg] notes is something that shouldn’t have to be the case. Their plastic can be recycled and made into other useful things, for example, ear savers similar to the ones many of us were 3D printing earlier in the year.

As you might imagine diving into a pile of used masks can be a little unhygienic, so the first step is to disinfect with alcohol. Then the various layers can be separated and the outer polypropylene ones collected and stacked between baking parchment to be melted on a skillet. The result is a polypropylene sheet that can be laser cut if it is thick enough, and from this are cut the ear savers. It’s not quite as neat a cut as the acrylic sheet we may be used to, but it’s adequate for the task.

While on the subject of masks, earlier in the year we presented a series in whose first part we dissected a selection.

What If You Could Design Your Own Aluminum Hand?

[Ian Davis] has decided to start over on his hand. [Ian] is missing four fingers on his left hand and has for a year now been showcasing DIY prosthetics on his YouTube channel. Back in July, we covered [Ian]’s aluminum hand.

Why aluminum? [Ian] found himself reprinting previous versions’ 3D printed plastic parts multiple times due to damage in the hinged joints, or UV damage rendering them brittle. With an ingenious splaying mechanism and some sensors powered by an Arduino, [Ian] has been wearing the custom machined aluminum hand on a daily basis.

However, as with many makers, he had that itch to revisit and refine the project. Even though the last version was a big jump in quality of life, he still found room for improvement. One particular problem was that the sensors tended to shift around and made it hard to get an accurate reading. To overcome this, [Ian] turned to a molding process. However, adding a stabilizing silicon layer meant that the design of the prosthetic needed to change. With several improvements in mind, [Ian] started the process of creating the plaster positive of his palm, working to create a silicon negative. The next step from here was to create a fiberglass shell that can go over the silicone with sensor wires embedded into the fiberglass shell.

It has been amazing to see the explosion in 3D printed prosthetics over the past few years and hope the trend continues. We look forward to seeing the next steps in [Ian’s] journey towards their ideal prosthetic!

Continue reading “What If You Could Design Your Own Aluminum Hand?”

Electronic Treatment For Diabetes?

If you ask power companies and cell phone carriers how much electromagnetic radiation affects the human body, they’ll tell you it doesn’t at any normal levels. If you ask [Calvin Carter] and some other researchers at the University of Iowa, they will tell you that it might treat diabetes. In a recent paper in Cell Metabolism, they’ve reported that exposing patients to static magnetic and electric fields led to improved insulin sensitivity in diabetic mice.

Some of the medical jargon in a paper like this one can be hard to follow, but it seems they feed mice on a bad diet — like that which many of us may eat — and exposed them to magnetic and electrical fields much higher than that of the Earth’s normal fields. After 30 days there was a 33% improvement in fasting blood glucose levels and even more for some mice with a specific cause of diabetes.

Continue reading “Electronic Treatment For Diabetes?”

OpenFluid Warmer Aims To Get Medical Equipment Where It’s Needed

Intravenous fluids, or IV fluids, are a vital part of modern life-saving medicine. Depending on the fluids in question, they must often be stored at low temperatures, however, for delivery to a patient, it is beneficial to warm them to approximately 38 degrees to avoid causing hypothermia. To achieve this, an IV fluid warmer is used, but these are not readily available all over the world. To help rectify this shortcoming, [John Opsahl] started the OpenFluidWarmer project.

The goal of the project is to produce a safe, reliable IV fluid warmer that is also easily reproducible. Materials used must be cheap and readily available, and ideally should be easily substitutable where possible to maximise the design’s ability to be built anywhere it’s needed. The name of the project is a nod towards its open design – with the goal of the project to deliver medical equipment to those that don’t have it, there’s little benefit to keeping the design under wraps.

Development continues at a solid pace, with work to optimise the heater performance, firmware, and even the tools required for assembly all documented in the build logs. It’s a project that recalls the scramble earlier this year to create open source ventilators for COVID-19 patients. Ultimately, at the end of the day, it’s about getting medical hardware to where it’s needed most, and we applaud [John]’s efforts in this field! Video after the break.

Continue reading “OpenFluid Warmer Aims To Get Medical Equipment Where It’s Needed”

Seek And Ye Shall Command

If we count all the screens in our lives, it takes a hot minute. Some of them are touchscreens, some need a mouse or keyboard, but we are accustomed to all the input devices. Not everyone can use the various methods, like cerebral palsy patients who rely on eye-tracking hardware. Traditionally, that only works on the connected computer, so switching from a chair-mounted screen to a tablet on the desk is not an option. To give folks the ability to control different computers effortlessly [Zack Freedman] is developing a head-mounted eye-tracker that is not tied to one computer. In a way, this is like a KVM switch, but way more futuristic. [Tony Stark] would be proud.

An infrared detector on the headset identifies compatible screens in line of sight and synchs up with its associated HID dongle. A headset-mounted color camera tracks the head position in relation to the screen while an IR camera scans the eye to calculate where the user is focusing. All the technology here is proven, but this new recipe could be a game-changer to anyone who has trouble with the traditional keyboard, mouse, and touchscreen. Maybe QR codes could assist the screen identification and orientation like how a Wii remote and sensor bar work together.