Linamp, The IRL Winamp

Anyone who first experienced music on computers using Winamp probably shares a memory of seeing that classic UI for the first time. Everything about it was a step ahead of the clunky, chunky interfaces we were used to, and even though it was supposed to be unobtrusive, it was hard to tear your eyes off that silky-smooth spectrum analyzer bouncing out your favorite MP3s.

Recapturing a little of the Winamp magic is the goal of Linamp, an physical version of the classic media player. It reproduces the Winamp UI on a touchscreen LCD with a wide aspect ratio that almost perfectly matches the original layout. Behind the display is a Raspberry Pi 4 with a 32 GB SD card, with all the important connections brought out to a board on the back of the case. The case itself is a treat, as it borrows design elements from another bit of retro gear, the mini-rack audio systems that graced many a bookshelf in the 1980s — and powered many high school parties too, if memory serves.

To recreate the case, [Rodmg] designed a sheet metal case and had it custom-made from anodized aluminum by PCBWay. He also printed a bezel for the display that looks very similar to the Winamp window border, complete with control icons. Where the build really shines, though, is with the work [Rodmg] put into the software. He matched the original Winamp UI very closely, both in terms of layout and performance. The pains he went to to get the spectrum analyzer working, including a deep dive into FFT, are impressive.

The results speak for themselves on this one, and hats off to [Rodmg] for the effort and the ride on the nostalgia train. We don’t know if the recent announcement of Winamp’s impending open-sourcing will have much impact on this project, but it might result in a flood of new Winamp builds.

2024 Business Card Challenge: Tiny MIDI Keyboard

The progress for electronics over the past seven decades or so has always trended towards smaller or more dense components. Moore’s Law is the famous example of this, but even when we’re not talking about transistors specifically, technology tends to get either more power efficient or smaller. This MIDI keyboard, for example, is small enough that it will fit in the space of a standard business card which would have been an impossibility with the technology available when MIDI first became standardized, and as such is the latest entry in our Business Card Challenge.

[Alana] originally built this tiny musical instrument to always have a keyboard available on the go, and the amount of features packed into this tiny board definitely fits that design goal. It has 18 keys with additional buttons to change the octave and volume, and has additional support for sustain and modulation as well. The buttons and diodes are multiplexed in order to fit the IO for the microcontroller, a Seeed Studio Xiao SAMD21, and it also meets the USB-C standards so it will work with essentially any modern computer available including most smartphones and tablets so [Alana] can easily interface it with Finale, a popular music notation software.

Additionally, the project’s GitHub page has much more detail including all of the Arduino code needed to build a MIDI controller like this one. This particular project has perhaps the best size-to-usefulness ratio we’ve seen for compact MIDI controllers thanks to the USB-C and extremely small components used on the PCB, although the Starshine controller or these high-resolution controllers are also worth investigating if you’re in the market for compact MIDI devices like this one.

Continue reading “2024 Business Card Challenge: Tiny MIDI Keyboard”

A small internet radio in 3D-printed case with a knob and an OLED screen.

GlobeTune Will Widen Your Musical Horizons

Are you tired of the same old music, but can’t afford any new tunes, even if they’re on dead formats? Boy, do we know that feeling. Here’s what you do: build yourself a GlobeTune music player, and you’ll never want for new music again.

The idea is simple, really. Just turn what we assume is a nice, clicky knob, and after a bit of static (which is a great touch!), you get a new, random radio station from somewhere around the globe. [Alexis D.] originally built this as a way to listen to and discover new music while disconnecting from the digital world, and we think it’s a great idea.

[Alexis D.] has production in mind, so after a Raspberry Pi Zero W prototype, they set about redesigning it around the ESP32. The current status seems to be hardware complete, software forthcoming. [Alexis D.] says that a crowdfunding campaign is in the works, but that the project will be open-sourced once in an acceptable state. So stay tuned!

Speaking of dead-ish formats, here’s an Internet radio in a cassette form factor.

Old Spotify Car Thing Hacks Gain New Attention

If you haven’t heard by now, Spotify is shutting down support for their “Car Thing” on December 9th of this year. Once that happens the automotive media player will officially be useless, with users being advised to literally throw them in the trash come December 10th. Call it an early Christmas present from your friends at the multi-billion dollar streaming company.

Surely the hardware hacking community can do a bit better than that. As it turns out, there’s actually been a fair amount of hacking and research done on the Car Thing, it’s just that most of it happened a couple years back when the device first hit the market. Things stagnated a bit in the intervening years, but now that the clock is ticking, there’s far more interest in cracking open the gadget and seeing what else we can do with it.

[lmore377]’s Car Thing macropad hack from 2022.
The car-thing-reverse-engineering repository on GitHub has a wealth of hardware and software information, and has been something of a rallying point for others who have been poking around inside the device. Unsurprisingly, the Car Thing runs Linux, and with relatively minor work you can gain U-Boot and UART access. With just 512 MB of RAM and a Amlogic S905D2 chip that’s similar to what powers the Radxa Zero, it’s not exactly a powerhouse. Then again, we’ve seen plenty of awesome projects done with less.

If you’re more into the step-by-step approach, security researcher [Nolen Johnson] did a write-up about getting access to the Car Thing’s internal Linux system back in 2022 that’s certainly worth a look. As you’d imagine, there’s also a few YouTube videos out there that walk the viewer through gaining access to the hardware. This one from [Dinosaur Talks Tech] not only provides a good overview of how to get into the system, but covers flashing modified versions of the stock firmware to unlock various features and tweaking the internal Linux OS.

Interestingly enough, while we’ve seen plenty of homebrew hardware players for Spotify over the years, this is the first time the Car Thing has ever crossed our path. Something tells us though that this isn’t the last time we’ll hear about this forlorn Linux gadget.

Continue reading “Old Spotify Car Thing Hacks Gain New Attention”

This MIDI BoomBox Takes Floppies

You might have had a boombox back in the 1990s, but probably not like the Yamaha MDP-10. As [Nicole] explains, the odd little device played MIDI files from a floppy disk. Technically, it wasn’t truly a boombox because it lacked batteries, but it sure looks like one.

The box also had a MIDI input jack, but no output. For an antique gadget, it is pretty impressive, but maybe not much by today’s standards. Of course, what we really wanted to see was what was inside. [Nicole] doesn’t disappoint.

The boombox brains are a pair of Hitachi H8 3000-series CPUs. The boards actually looks surprisingly modern until you notice the lack of integration. There are separate ROMs, RAMs, a floppy drive controller, and, of course, MIDI chips. Apparently, opening the box up is a challenge so [Nicole] suggests not doing it unless necessary. We assume it went back together with no problems.

There are lots of tidbits about peculiarities in the device. There are also, of course, recordings of the output and some comparisons from other devices. A great look into an old and odd piece of gear.

Since it has an input jack, you could connect it to — oh, we don’t know — maybe some spoons? Or a hurdy-gurdy.

Nature Vs Nurture In Beethoven’s Genome

When it comes to famous musicians, Beethoven is likely to hit most top ten charts. Researchers recently peered into his genome to see if they could predict his talent by DNA alone.

Using a previously-identified polygenetic index (PGI) for musical talent, which finds the propensity of certain genes to influence a given trait after a genome-wide association study (GWAS), the researchers were able to compare samples of Beethoven’s DNA to that of two separate population studies with known musical achievement data.

Much to the relief of those who saw Gattaca as a cautionary tale, the scientists found that Beethoven scored only around the tenth percentile for the ability to keep a beat according to his genetic markers. According to the researchers, using genetic markers to predict abilities of an individual can lead to incorrect conclusions, despite their usefulness for group level analyses.

Curious about more musical science? How about reconstructing “Another Brick in The Wall (Part I)” from brainwaves or building a Square Laser Harp?

MIDI Spoon Piano Is Exactly What You Think It Is

Pianos traditionally had keys made out of ivory, but there’s a great way to avoid that if you want to save the elephants. You can build a keyboard using spoons, as demonstrated by [JCo Audio]. 

The build relies on twelve metal spoons to act as the keys of the instrument. They’re assembled into a wooden base in a manner roughly approximating the white and black keys of a conventional piano keyboard, using 3D-printed inserts to hold them in place. They’re hooked up to a Raspberry Pi Pico via a Pico Touch 2 board, which allows the spoons to be used as capacitive touch pads. Code from [todbot] was then used to take input from the 12 spoons and turn it into MIDI data. From there, hooking the Pi Pico up to a PC running some kind of MIDI synth is enough to make sounds.

It’s a simple build, but a functional one. Plus, it lets you ask your friends if they’d like to hear you play the spoons. The key here is to make a big show of hooking your instrument up to a laptop while explaining you’re not going to play the spoons a la the folk instrument, but you’re going to play a synth instead. Then you should use the spoon keyboard to play emulated spoon samples anyway. It’s called doubling down. Video after the break.

Continue reading “MIDI Spoon Piano Is Exactly What You Think It Is”