Hacking An Extra SATA Port Into A Thin Client

Thin clients were once thought by some to be the future of computing. These relatively low-power machines would rely on large server farms to handle the bulk of their processing and storage, serving only as a convenient local way for users to get access to the network. They never quite caught on, but [Jan Weber] found an old example and set about repurposing it as a NAS.

The Fujitsu Futro S900 was built up to 2013, and only had one SATA port from the factory. [Jan] wanted to add another as this would make the device more useful as a network attached storage server.

The motherboard design was intended primarily for industrial control or digital signage applications, and thus has plenty of interfaces onboard. [Jan]’s first target was some unpopulated footprints for SATA ports onboard, but after soldering on a connector, it was found that the BIOS wouldn’t recognise the extra ports anyway.

However, after reflashing the BIOS with one from an alternate model, the port worked! The system also seemed to then imagine it was connected to many additional LAN interfaces, but other than that glitch, the hack is functional. Now, with a pair of 2 TB SSDs inside, the S900 is a great low-power NAS device that can store [Jan]’s files.

It’s a tidy hack, and one that will likely appeal to those who prefer to run their own hardware rather than relying on the cloud. If you’re working on your own innovative NAS project, be sure to let us know!

Tiny Ethernet Cable Arms Race Spawns From Reddit Discussion

If you’ve had any dealings with Cat 5 and Cat 6 cable, and let’s be honest, who hasn’t, you’ve probably wrestled with lengths anywhere from 1 meter to 25 meters if you’re hooking up a long haul. Network admins will be familiar with the 0.1 m variety for neat hookups in server cabinets. However, a Reddit community has recently taken things further.

It all started on r/ubiquiti, where user [aayo-gorkhali] posted a custom-built cable just over 2 inches long. The intention was to allow a Ubiquiti U6-IW access point to be placed on a wall. The tiny cable was used to hook up to the keystone jack that formerly lived in that position, as an alternative to re-terminating the wall jack into a regular RJ45 connector.

Naturally this led to an arms race, with [darkw1sh] posting a shorter example with two RJ-45 connectors mounted back to back with the bare minimum of cable crimped into the housings. [Josh_Your_IT_Guy] went out the belt sander to one-up that effort, measuring just over an inch in length.

[rickyh7] took things further, posting a “cable” just a half-inch long (~13 mm). In reality, it consists of just the pinned section of two RJ-45 connectors mounted back to back, wired together in the normal way. While electrically it should work, and it passes a cable tester check, it would be virtually impossible to actually plug it into two devices at once due to its tiny length.

We want to see this go to the logical end point, though. This would naturally involve hacking away the plastic casings off a pair of laptops and soldering their motherboards together at the traces leading to the Ethernet jack. Then your “cable” is merely the width of the solder joint itself.

Alternatively, you could spend your afternoon learning about other nifty hacks with Ethernet cables that have more real-world applications!

Teardown: Alcatel Telic 1 Minitel Terminal

For British teenagers in the 1980s, the delights of 8-bit computers such as the Sinclair Spectrum, Commodore 64, or BBC Micro were firmly restricted to the offline arena. We would read about the BBS scene on the other side of the Atlantic, but without cheap local calls and with a modem costing a small fortune, the chances of us ever experiencing one was zero. When we took the British school rite of passage of a trip to France though, we were astounded to see that every French person was not merely online, but that they were doing so with a neat little all-in-one terminal. We’d just been introduced to the French Minitel system, and in that minute shared a glimpse of the future.

Un Réseau Trés Français

The Minitel terminal is a small CRT monitor with a fold-down alphanumeric keyboard.
My Alcatel Minitel terminal

In the 1970s and 1980s, so-called videotext systems, terminal-based phoneline access to information services on central computers, were seen as an obvious next step for telephone network operators with an interest in profitable new products. In most countries this resulted in services such as the UK’s Prestel, a subscription service relying on costly hardware, but France Télécom instead pursued the bold path of making the terminals free to subscribers with free access to phone listings and yellow pages, but a business model based on pay-to-use premium services.

Thus, through the 1980s all French households had a Minitel terminal beside the phone, and the service became a runaway success. Ever since seeing Minitel terminals as a tourist I’d been fascinated by the service, so here in the 2020s when a friend was visiting their family in France I asked whether he could pick up an old Minitel terminal for me. Thus I found myself parting with around $25 and being rewarded with a slightly battered Minitel cardboard box containing one of the familiar brown Alcatel terminals. I certainly wasn’t expecting one in its original packaging. Continue reading “Teardown: Alcatel Telic 1 Minitel Terminal”

That Clock On The Wall Is Actually A Network Ping Display

We’ve all been online from home a bit more than usual lately, in ways that often stretch the limits of what our ISP can muster. You know the signs — audio that drops out, video sessions that make you look like [Max Headroom], and during the off-hours, getting owned in CS:GO by pretty much everyone. All the bandwidth in the world won’t make up for high latency, and knowing where you stand on that score is the point of this ping-tracking clock.

This eye-catching lag-o-meter is courtesy of [Charl], who started the build with a clock from IKEA. Stripped of pretty much everything but the bezel, he added a coaxial clock motor and a driver board, along with a custom-printed faceplate with logarithmic scale. The motors are driven by an ESP32, which uses internet control message protocol (ICMP) to ping a trusted server via WiFi, calculates the proper angles for the hands, and drives the motors to show you the bad news. There’s also an e-paper display in the face, showing current server and WiFi settings.

We really like how this clock looks, and if it wasn’t for the fact that the numbers it displays would often be too depressing to bear, we’d build one in a snap. If facing the painful truth isn’t your style, there are other neat ICMP tricks that you can try instead.

First Hacks: The Brand New Nokia 5G Gateway Router

Aside from being the focus of a series of bizarre conspiracy theories, 5G cellular networks offer the promise of ultra-fast Internet access anywhere within their range. To that end there are a new breed of devices designed to provide home broadband using 5G as a backhaul. It’s one of these, a Nokia Fastmile, that [Eddie Zhang] received, and he’s found it to be an interesting teardown and investigation. Spoiler: it runs Android and has exploitable bugs.

A privilege escalation bug in the web administration tool led to gaining the ability to export and modify configuration files, but sadly though a telnet prompt can be opened it’s not much use without the password. Uncovering some blocked-off ports on the base of the unit revealed a USB-C port, which was found to connect to an Android device. Via ADB a shell could be opened on Android, but on further  investigation it was found that the Fastmile is not a single device but two separate ones. Inside is a PCB with an Android 5G phone to handle the connection, and another with a completely separate home router.

With access to the Android side and a login prompt on the router side that was as far as he was prepared to go without risking bricking his Fastmile. It only remained to do a teardown, which reveals the separate PCBs with their own heatsinks, and an impressive antenna array. Perhaps these devices will in time become as ubiquitous as old routers, and we’ll see them fully laid bare.

It’s a shame that we’ve had to write more about the conspiracy theories surrounding 5G than real 5G devices, but maybe we’ll see more teardowns like this one to make up for it.

So. What’s Up With All These Crazy Event Networks Then?

As an itinerant Hackaday writer I am privileged to meet the people who make up our community as I travel the continent in search of the coolest gatherings. This weekend I’ve made the trek to the east of the Netherlands for the ETH0 hacker camp, in a camping hostel set in wooded countryside. Sit down, connect to the network, grab a Club-Mate, and I’m ready to go!

Forget the CTF, Connecting To WiFi Is The Real Challenge!

There no doubt comes a point in every traveling hacker’s life when a small annoyance becomes a major one and a rant boils up from within, and perhaps it’s ETH0’s misfortune that it’s at their event that something has finally boiled over. I’m speaking of course about wireless networks.

While on the road I connect to a lot of them, the normal commercial hotspots, hackerspaces, and of course at hacker camps. Connecting to a wireless network is a simple experience, with a level of security provided by WPA2 and access credentials being a password. Find the SSID, bang in the password, and you’re in. I’m as securely connected as I reasonably can be, and can get on with whatever I need to do. At hacker camps though, for some reason it never seems to be so simple.

Instead of a simple password field you are presented with a complex dialogue with a load of fields that make little sense, and someone breezily saying “Just enter hacker and hacker!” doesn’t cut it when that simply doesn’t work. When you have to publish an app just so that attendees can hook up their phones to a network, perhaps it’s time to take another look . Continue reading “So. What’s Up With All These Crazy Event Networks Then?”

Learn DMX512 Basics

If you’ve done anything with modern lighting effects, you’ve probably heard of DMX, also known as DMX512. Ever wonder what’s really happening under the hood? If so, then you should have a look at [EEForEveryone’s] video on the topic, which you can see below.

At the core, the DMX512 uses RS485, but adds software layers and features. The video uses the OSI model to show how the system works.

Continue reading “Learn DMX512 Basics”