battery powered wall mounted clock with LCD display and 10 capacitive touch buttons

A Peppy Low Power Wall Mounted Display

[Phambili Tech] creates a battery powered mountable display, called “the Newt”, that can be used to display information about the time, calendar, weather or a host of other customizable items.

The Newt tries to strike a balance between providing long operating periods while still maintaining high refresh rates and having extensive features. Many of the battery powered devices of this sort use E-Ink displays which offer long operating windows but poor refresh rates. The Newt uses an LCD screen that, while not being as low power as an E-Ink display, offers extended battery operation while still being daylight readable and providing high refresh rates.

The display itself is a 2.7 inch 240×400 SHARP “Memory In Pixel” LCD that provides the peppy display at low power. The Newt is WiFi capable through its ESP32-S2-WROVER module with a RV-3028-C7 Real Time Clock, a buzzer for sound feedback and capacitive touch sensors for input and interaction. A 1.85Wh LiPo battery (3.7V, 500mAh) is claimed to last for 1-2 months, with the possibility of using a larger battery for longer life.

Continue reading “A Peppy Low Power Wall Mounted Display”

Shot of CubeTouch, a six sided cube built out of PCBs with each of the top PCB allowing for diffusion of the LEDs on the inside to shine through

Keyboard Shortcuts At The Touch Of A Planetary Cube

[Noteolvides] creates the CubeTouch, a cube made of six PCBs soldered together that creates a functional and interactive piece of art through its inlaid LEDs and capacitive touch sensors.

The device itself is connected through a USB-C connector that powers the device and allows it to send custom keyboard shortcuts, depending on which face is touched.

Finger touching the top of a CubeTouch device

The CubeTouch is illuminated on the inside with six WS2812 LEDs that take advantage of the diffusion properties of the underlying FR4 material to shine through the PCBs. The central microprocessor is a CH552 that has native USB support and is Arduino compatible. Each “planet” on the the five outward facing sides acts as a capacitive touch sensor that can be programmed to produce a custom key combination.

Assembling the device involves soldering the connections at two joints for each edge connecting the faces.

We’re no strangers to building enclosures from FR4, nor are we strangers to merging art and functionality. The CubeTouch offers a further exploration of these ideas in a sweet package.

The CubeTouch is Open Source Hardware Certified with all documentation, source code and other relevant digital artifacts available under a libre/free license.

Continue reading “Keyboard Shortcuts At The Touch Of A Planetary Cube”

Solar Flare Quiets A Quarter Of The Globe

In the “old” days, people were used to the idea that radio communication isn’t always perfect. AM radio had cracks and pops and if you had to make a call with a radiophone, you expected it to be unreliable and maybe even impossible at a given time. Modern technology,  satellites, and a host of other things have changed and now radio is usually super reliable and high-fidelity. Usually. However, a magnitude 7.9 solar flare this week reminded radio users in Africa and the Middle East that radio isn’t always going to get through. At least for about an hour.

It happened at around 10 AM GMT when that part of the world was facing the sun. Apparently, a coronal mass ejection accompanied the flare, so more electromagnetic disruption may be on its way.

The culprit seems to be an unusually active sunspot which is expected to die down soon. Interestingly, there is also a coronal hole in the sun where the solar wind blows at a higher than usual rate. Want to keep abreast of the solar weather? There’s a website for that.

We’ve pointed out before that we are ill-prepared for technology blackouts due to solar activity, even on the power grid. The last time it happened, we didn’t rely so much on radio.

Continue reading “Solar Flare Quiets A Quarter Of The Globe”

The CPSC Says Plug To Socket, Not Plug To Plug, Please

When the power goes out, it goes without saying that all the lights and sockets in a house stop working. Savvy rural homeowners stock up with candles, batteries, LED lights, and inverters.  More foolhardy folks simply hook up their home electrical system to a generator using a mains lead with a plug on one end between the generator and a wall socket. This should be so obviously dangerous as to be unnecessary, but it’s become widespread enough that the US Consumer Product Safety Commission has issued a warning about the practice. In particular, they’re concerned that there’s not even a need to wire up a lead, as they’re readily available on Amazon.

The dangers they cite include electrocution, fire hazard from circumventing the house electrical protection measures, and even carbon monoxide poisoning because the leads are so short that the generator has to be next to the socket. Hackaday readers won’t need telling about these hazards, even if in a very few and very special cases we’ve seen people from our community doing it. Perhaps there’s a flaw in the way we wire our homes, and we should provide a means to decouple our low-power circuits when there’s a power cut.

It’s likely that over the coming decades the growth of in-home battery storage units following the likes of the Tesla Powerwall will make our homes more resilient to power cuts, and anyone tempted to use a plug-to-plug lead will instead not notice as their house switches to stored or solar power. Meanwhile, some of us have our own ways of dealing with power outages.

Plug image: Evan-Amos, Public domain.

This Week In Security: 11,000 Gas Stations, TrustZone Hacks Kernel, And Unexpected Fuzzing Finds

Automated Tank Gauges (ATGs) are nifty bits of tech, sitting unseen in just about every gas station. They keep track of fuel levels, temperature, and other bits of information, and sometimes get tied into the automated systems at the station. The problem, is that a bunch of these devices are listening to port 10001 on the Internet, and some of them appear to be misconfigured. How many? Let’s start with the easier question, how many IPs have port 10001 open? Masscan is one of the best tools for this, and [RoseSecurity] found over 85,000 listening devices. An open port is just the start. How many of those respond to connections with the string In-Tank Inventory Reports? Shodan reports 11,113 IPs as of August of this year. [RoseSecurity] wrote a simple Python script that checked each of those listening IPs came up with a matching number of devices. The scary bit is that this check was done by sending a Get In-Tank Inventory Report command, and checking for a good response. It seems like that’s 11K systems, connected to the internet, with no authentication. What could possibly go wrong? Continue reading “This Week In Security: 11,000 Gas Stations, TrustZone Hacks Kernel, And Unexpected Fuzzing Finds”

Let Slip The Chips Of War

We’re going to go out on a limb and predict that future history books will note that the decision to invade a sovereign nation straight after a worldwide pandemic wasn’t exactly the best timing. Turns out the global electronics shortage the pandemic helped to catalyze isn’t just affecting those of us with peaceful intentions, as the Russian war machine is having a few supply issues with the parts needed to build modern weapons and their associated control equipment.

As you might expect, many of these parts are electronic in nature, and in some cases they come from the same suppliers folks like us use daily. This article from POLITICO includes an embedded spreadsheet, broken down by urgency, complete with part numbers, manufacturers, and even the price Moscow expects to pay!

Chips from US-based firms such as Texas Instruments are particularly hard for the Kremlin to source.

So what parts are we talking about anyway? The cheapest chip on the top priority list is the Marvell ‘Alaska’ 88E1322 which is a dual Gigabit Ethernet PHY costing a mere $7.10 USD according to Moscow. The most expensive is the 10M04DCF256I7G, which is an Altera (now Intel) Max-10 series FPGA, at $1,101 USD (or 66,815 Rubles, for those keeping score).

But it’s not just chips that are troubling them, mil-spec D-sub connectors by Airborn are unobtainable, as are all classes of basic passive parts, resistors, diodes, discrete transistors. Capacitors are especially problematic (aren’t they always). A whole slew of Analog Devices chips, as well as many from Maxim, Micrel and others. Even tiny logic chips from Nexperia.

Of course, part of this is by design. Tightened sanctions prevent Russia from purchasing many of these parts directly, which is intended to make continued aggression as economically unpleasant as possible. But as the POLITICO article points out, it’s difficult to prevent some intermediaries from ‘helping out’ without the West knowing. After all, once a part hits the general market, it is next to impossible to guarantee where it will eventually get soldered down.

Thanks to [Kim Tae] for the tip!

Blue Origin Loses Rocket, Gains Abort System Test

Even if you’re just making a brief hop over the Kármán line to gain a few minutes of weightlessness, getting to space is hard. Just in case any of their engineers were getting complacent, Blue Origin just got a big reminder of that fact this afternoon with the destruction of their New Shepard 3 (NS3) rocket during a suborbital research flight.

But while the rocket itself was lost, the New Shepard’s automated abort systems were able to push the capsule H. G. Wells away from the fireball, saving the dozens of scientific experiments which had been loaded onto the un-crewed vehicle. While there’s been no public word yet on the condition of these experiments, it’s reasonable to assume that at least some portion of them can be re-flown in the future — a fact that will likely come as a great relief to the researchers who designed them. It will be interesting to see who picks up the tab for the do-over flight; while launch insurance is a must-have for billion dollar satellites, it seems unlikely these small suborbital experiments would have been covered under a similar policy.

A spurt of flame can be seen in the otherwise invisible exhaust moments before engine failure.

We’re also still in the dark about what caused the in-flight breakup of NS3, other than the fact that the engine was clearly sputtering in the seconds before it blew apart. This could be a sign that the engine’s nominal fuel-to-oxidizer ratio was faltering, or perhaps even indicative of foreign debris becoming dislodged and burning in the combustion chamber. But really, without official word from Blue Origin, it’s impossible to say what happened.

This is especially true when you consider that we’re talking about a vehicle that’s pushing the envelope to begin with. Remember, the New Shepard is a reusable booster, and NS3 is specifically a veteran of eight flights — with all but one of them taking the booster above the 100 kilometer altitude, which is generally accepted to be the boundary of space.

For those worried that celebrities and assorted millionaires will no longer have access to space, fear not. Blue Origin’s crewed flights have flown exclusively on the newer NS4 and its associated capsule First Step. This does however mean that Blue Origin no longer has a spare booster on which to fly commercial payloads, potentially putting into jeopardy any semblance of scientific value the program may have had.

Continue reading “Blue Origin Loses Rocket, Gains Abort System Test”