Happy Ada Lovelace Day!

Today is Ada Lovelace Day, a day to celebrate and encourage women in the fields of science and technology. The day is named after Augusta Ada King-Noel, Countess of Lovelace, born Byron. (You can see why we just call her Ada Lovelace.) She was a brilliant mathematician, and the writer of what’s probably the first real computer program — it computed the Bernoulli series. At least according Charles Babbage, in correspondence to Michael Faraday, she was an “enchanted math fairy”. Not only a proto-coder, she wrote almost all of the existing documentation about Babbage’s computation engine. She’s a stellar example of a brilliant and unique individual. If you were looking for a superhero to represent women in science and tech, Ada’s a good pick.

In our minds, she gets stiff competition from Marie Curie. Curie did fundamental research on radioactivity, is one of two people with Nobel Prizes in two different sciences, and got to name the two elements that she discovered. 2011 was the Year of Marie Curie in France and Poland. She has her own year in addition to her own unit. Even Spiderman doesn’t have those radioactive super powers!

Don’t Need Another Hero?

But on a day dedicated to getting more women into the technical arts, it’s also a little bit daunting to pick Lovelace or Curie as a symbol. Are you ever going to have something that equals “first computer program” or “two Nobel Prizes” on your résumé? We aren’t. It’s great to have heroes, but maybe we need more than just heroes — we also need mentors.

Continue reading “Happy Ada Lovelace Day!”

Screwdriving

Screwdriving! It’s like wardriving but instead of discovering WiFi networks, the aim is to discover Bluetooth Low Energy (BLE)  devices of a special kind: adult toys. Yes, everything’s going to be connected, even vibrators. Welcome to the 21st century.

Security researcher [Alex Lomas] recently found that a lot of BLE-enabled adult toys are completely vulnerable to malicious attacks. In fact, they are basically wide open to anyone by design.

“Adult toys lend themselves to being great testbeds for IoT research: they’re BLE, they’re relatively cheap, they’re accessible and have companion apps for the full spectrum of testing.”

Yes… great test beds… Erm, anyway, [Alex Lomas] found that there is no PIN nor password protection, or the PIN is static and generic (0000 / 1234) on every Bluetooth adult toy analysed. Manufacturers don’t want to go through the hassle, presumably because sex toys lack displays that would enable a classic Bluetooth pairing, with random PIN and so on. While this might be a valid point, almost all electronic appliances have an “ON/OFF” button for input and some LED (or even vibration in these cases) that allow some form of output. It could be done, and it’s not like vibrators are the only minimalistic appliances out there in the IoT world.

Although BLE security is crippled by design (PDF), it is possible to add security on top of flawed protocols. The average web-browser does it all the time. The communications don’t have to be clear-text where you can literally see “Vibrate:10” flying around in packets. Encryption could be implemented on top of the BLE link between the app and the device, for instance. Understandably, security in some devices is not absolutely critical. That being said, the security bar doesn’t have to be lowered to zero — it’s not safe for work or play.

[via Arstechnica]

Project Loon Will Float LTE To Puerto Rico

Some of the biggest names in technology have offered their help in rebuilding Puerto Rico’s infrastructure. The newest name on the list? The X division of Alphabet, who want to help fill the huge communications gap using Project Loon, their high-altitude balloon network. It looks like X is going to get their wish, as they have just been granted license from the FCC to deploy LTE cell coverage to both Puerto Rico and the US Virgin Islands.

The plan is to launch 30 balloons that will act as a network of floating cell towers to radiate an LTE signal originating from the ground. This coverage would be a great boon to a devastated communications infrastructure, but it won’t be a cakewalk to implement. Some handsets of both major persuasions will require a temporary over-the-air update before they can use Project Loon’s network. For phones that can’t operate on Band 8, it won’t work at all. Even so, it’s a great start.

Now you would think that an emergency communications restoration plan like this would be met by all parties with open arms and a circle of pats on the back, but this solution requires a lot of cooperation. One of the major hurdles was to secure spectrum rights from some if not all of the incumbent wireless carriers. Miraculously, eight of them have agreed to hand over their bandwidth. Another issue is that the FCC license is only good for six months, although they would probably entertain an extension given the circumstances. Finally, the dual ownership of the Virgin Islands makes the situation even more complicated, as X must agree not to infringe upon the wireless coverage footprint of the British Virgin Islands.

Via r/Futurology

SpiderMAV drone perching from the ceiling

SpiderMAV Drone Shoots Webs To Perch And Stabilize

Introducing your friendly neighborhood SpiderMAV, a micro aerial vehicle that shoots webbing to enable it to hang from ceilings and stabilize itself horizontally using low power. It’s inspired by the Darwin’s bark spider that spins a circular web with anchor lines up to 25 meters (82 feet) long.

SpiderMAV perching and stabilizing modules

For the DJI Matrice 100 drone to hang from a ceiling, a compressed gas cylinder fires a magnet with a trailing polystyrene line up to a steel beam. The line can then be reeled in to the desired length. For horizontal stabilization, line-trailing magnets are fired horizontally instead and then reeled in to tension the lines.

To test the effectiveness of the system, a cross wind was produced using a fan. With the DJI’s attitude-hold mode, maximum X, Y and Z deviations were 136, 386 and 106 mm respectively. With the stabilization, however, the deviations were reduced to 47, 80 and 74 mm. The power requirements were also reduced to essentially nil. Watch it in action in the videos below.

SpiderMAV is the brainchild of Imperial College London’s Aerial Robotics Laboratory, led by [Mirko Kovac], and is still experimental. For example, a magnet release mechanism has yet to be built in. Perhaps a sharp tug by the reeling mechanism, or a sudden thrust by the drone would release the magnets. Or the permanent magnets could be replaced with electromagnets, provided the required current doesn’t offset the efficiency gains. What solutions can you come up with? Let us know in the comments.

Continue reading “SpiderMAV Drone Shoots Webs To Perch And Stabilize”

Hackerfarm Brings Light To Puerto Rico

Puerto Rico has a long road to recovery, and part of this is the damaged infrastructure: much of the electricity distribution network was destroyed, and will take months or years to rebuild. The Japanese hacker group [Hackerfarm], founded by Hackaday friend [Akiba], is looking to help by sending some of their solar lanterns to provide off-grid light.

They’ve already shipped one batch, and are using the proceeds from sales of these paper lanterns to send more of them to Puerto Rico, where they will be given out to those who need them. The group has carried out similar projects before, distributing lanterns to Tsunami-hit areas of Japan and to Rwanda, where a women’s group builds and sells the lanterns. It seems like a great cause, and the design of the lanterns is pretty neat. We love that they provide an introduction to soldering and serve a higher purpose at the same time.

We’ve mentioned Hackerfarm before, both as part of a growing rural hackerspace scene, and because of their insane EL-wire creations and choreography. And [Akiba] gave a great talk at last year’s Supercon where he discussed the ins and outs of getting virtually anything done in Shenzhen. Check it out if you haven’t already.

Who Owns Arduino?

Who owns Arduino? We don’t mean metaphorically — we’d say that’s the community of users and developers who’ve all contributed to this amazing hardware/software ecosystem. We mean literally. Whose chips are on the table? Whose money talks? It looks like ARM could have a stake!

The Arduino vs Arduino saga “ended” just under a year ago with an out-of-court settlement that created a private holding company part-owned by both parties in the prior dispute over the trademark. And then, [Banzi] and the original founders bought out [Musto]’s shares and took over. That much is known fact.

The murky thing about privately held companies and out-of-court settlements is that all of the details remain private, so we can only guess from outside. We can speculate, however, that buying out half of the Arduino AG wasn’t cheap, and that even pooling all of their resources together, the original founders just didn’t have the scratch to buy [Musto] out. Or as the Arduino website puts it, “In order to make [t]his a reality, we needed a partner that would provide us with the resources to regain full ownership of Arduino as a company… and Arm graciously agreed to support us to complete the operation.” That, and the rest of the Arduino blog post, sure looks like ARM provided some funds to buy back Arduino.

We reached out to [Massimo Banzi] for clarification and he replied:

“Hi arm did not buy nor invest in arduino. The founders + Fabio Violante still own the company. As I wrote in the blog post we are still independent, open source and cross platform.”

We frankly can’t make sense of these conflicting statements, at least regarding whether ARM did or didn’t contribute monetary resources to the deal. ARM has no press release on the deal as we write this. Continue reading “Who Owns Arduino?”

Review: New 3G And Cat-M1 Cellular Hardware From Hologram

In July we reported on the launch of the Hologram developer program that offered a free SIM card and a small amount of monthly cellular data for those who wanted to build connectivity into their prototypes. Today, Hologram has launched some new hardware to go along with that program.

Nova is a cellular modem in a USB thumb drive form factor. It ships in a little box with a PCB that hosts the u-blox cellular module, two different antennas, a plastic enclosure, and a SIM card. The product is aimed at those building connected devices around single-board computers, making it easy to plug Nova in and get connected quickly.

This device that Hologram sent me is a 3G modem. They have something like 1,000 of them available to ship starting today, but what I find really exciting is that there is another flavor of Nova that looks the same but hosts a Cat-M1 version of the u-blox module. This is a Low Power Wide Area Network technology built on the LTE network. We’ve seen 2G and 3G modems available for some time now, but if go that route you’re building a product around a network which has an end-of-life concern.

Cat-M1 will be around for much longer and it is designed to be low power and utilizes a narrower bandwidth for less radio-on time. I asked Hologram for some power comparison estimates between the two technologies:

AVERAGE current consumption comparisons:

Cat-M1: as low as 100 mA while transmitting and never more than 190 mA
Equivalent 3G: as high as 680 mA while transmitting

PEAK current consumption comparisons (these are typically filtered through capacitors so the power supply doesn’t ever witness these values, and they are only momentary):

Cat-M1: Less than 490 mA
Equivalent 3G: As high as 1550 mA

This is an exciting development because we haven’t yet seen LTE radios available for devices — of course there are hotspots but those are certainly not optimized for low power or inclusion in a product. But if you know your ESP8266 WiFi specs you know that those figures above put Cat-M1 on a similar power budget and in the realm of battery-operated devices.

The Cat-M1 Nova can be ordered beginning today, should ship in limited quantities within weeks, with wider availability by the end of the year. If you can’t get one in the first wave, the 3G Nova is a direct stand-in from the software side of things.

I suspect we’ll see a lot of interest in Cat-M1 technology moving forward simply because of the the technology promises lower power and longer support. (I’m trying to avoid using the term IoT… oops, there it is.) For today, let’s take a look at the 3G version of the new hardware and the service that supports it.

Continue reading “Review: New 3G And Cat-M1 Cellular Hardware From Hologram”