A Flex Sensor For A Glove Controller Using An LDR

When most of us think of glove controllers, the first which comes to mind is Nintendo’s PowerGlove, which promised much more than it delivered. But the idea persists, and from time to time we see them here at Hackaday. [Gord Payne] has one with an elegant sensor solution, it detects finger movement using a light dependent resistor.

The cleverest designs are those which are the simplest, and this one eschews complex mechanisms and exotic parts for a simple piece of flexible tube. At one end is an LED and at the other the LDR, and when attached to a glove it provides a finger sensor without the fuss. The amount of light reaching the LDR from the LED decreases as the pipe is bent, and with a simple divider circuit a voltage can be read by an Arduino. You can see it in action in the video below the break, where the glove flexing controls a servo.

Perhaps this might revitalize a bit of interest in glove controllers, something we probably don’t see too many of. Those Nintendo PowerGloves do still crop up from time to time though.

Continue reading “A Flex Sensor For A Glove Controller Using An LDR”

Spaceballs Get Serialized

As much as we’d love a TV show version of the cult classic movie, we’re talking about a different kind of Spaceball. While there have been many iterations, [Evan] had a Spaceball built by a company known as Spacetec in 1991 and rebranded by HP. Being an older peripheral, he used the Orbotron 9001, a converter from RS232 serial to USB, to interface his Spaceball with modern devices.

The spaceball was one of the first 6 degrees of freedom controllers, useful for CAD and some games that supported it. It’s famous for being involved in the NASA Mars Pathfinder mission as it was used to control the Sojourner rover. In addition to the perfect orb, it also features eight handy buttons.

The Orbotron is a USB-capable microcontroller (Atmel SAMD21) designed to support the Spaceball 360, 4000, and 5000 series. Ultimately, after tinkering with the code to support the 2003 and 3003 Spaceballs, he had some reasonably usable with some rough edges. For example, acceleration curves still need tweaking, and going too fast can get you stuck. The downside was the rubber coating on the ball that had degraded over the years, making it horrendously sticky.

All the code changes are on GitHub. We’d love to see more spacemice integrated into things, like this ergonomic keyboard. Or even an open-source version of a spacemouse. After the break, we have a video of [Adafruit] showing a Spaceball 2003 working with a serial adapter.

Continue reading “Spaceballs Get Serialized”

Recreating A Numpad For The ADM-3A

[Evan] already had a working ADM-3A (a dumb terminal from 1976) but was starting to eye the accessories hungrily. He had only seen the numpad on Wikipedia and in the manual. So when he found some authentic stackpole numpads on a surplus sale, he grabbed them and converted them to be ADM-3A compatible.

Looking at the schematic for the ADM-3A, [Evan] figured out that the numpad was parallel to the keyboard matrix, not adjacent. This meant that pressing a five on the keyboard was electrically equivalent to pressing a five on the keyboard. So holding shift while punching on the numpad leads to some unexpected characters for those of us used to more modern keyboards. Since [Evan] only needed to make one or two of these, he soldered wires directly to switch contacts in the matrix that the ADM-3A expects. A 3d printed housing, some rubber feet, and a ribbon cable later, it was done. While it looks slightly different from the original, the vibe is right, and given that it is a stackpole switch, it has the same feel. With the spare numpads, he created a replacement PCB that runs QMK and connects to a more modern computer via USB-C. The files for the 3d printed housing are also up on GitHub, along with the PCBs and QMK configuration files.

If you’re interested in what more you can do with an ADM-3A, why not hook it up to a Raspberry Pi?

Gorgeous Sunflower Macropad Will Grow On You

Once [Hide-key] saw the likes of the banana and corn macro pads, they knew they had to throw their hat in this strange and wonderful ring. Some family members suggested a sunflower, and off they went looking for inspiring images, finally settling on a more iconic and less realistic design which we think is quite beautiful.

This lovely little macro pad has seven keys hiding under those petals, with the eighth major petal concealing a XIAO RP2040 microcontroller. The rest of the major petals actuate a low-profile Kailh choc in — what else? — brown. Don’t worry, the middle isn’t a wasteland — there’s a low-profile rotary encoder underneath. Part of the reason this flower looks so great is that [Hide-key] started with SLA prints, but the paint choices are aces as well. If you’d like to grow your own sunflower, everything about this garden is open-source.

Oh yes, we totally covered the banana and the banana split, though we must have missed out on the corn. We hear that when you try it with butter, everything changes.

Via KBD #109

The Whole Thing In Python

[hsgw] built a macropad in Python, and that’s not a strange language to choose to program the firmware in these days. But that’s just the tip of the iceberg. The whole process — from schematic capture, through routing and generating the PCB, and even extending to making the case — was done programmatically, in Python.

The macropad itself isn’t too shabby, sporting an OLED and some nice silkscreen graphics, but the whole point here is demonstrating the workflow. And that starts with defining the schematic using skidl, laying out the board with pcbflow, which uses a bunch of KiCAD footprints, and then doing the CAD design for a case in cadquery, which is kind of like OpenSCAD.

The result is that the whole physical project is essentially code-defined from beginning to end.  We’re not sure how well all the different stages of the workflow play together, but we can imagine that this makes versioning a ton easier.  Coding a PCB is probably overkill for something simple like this — you’d be faster to lay it out by hand for sure — but it doesn’t really scale.  There’s definitely some level of complexity where you don’t want to be clicking an pointing, but rather typing. Think of this as the “hello world” to designing in code.

Some of the tools in the workflow were new to us, but if you’d like an in-depth look at cadquery, we’ve got you covered. [Tim Böscke]’s insane CPU made from 555 timers (yes, really) uses pcbflow. And if you’d like to dig back a bit into the origins of Python PCB design, this post introduces CuFlow, on which pcbflow was based.

The macropad PCB panel next to an assembled macropad

A Fun Low-Cost Start For Your Macropad Hobby

If you were ever looking for a small relaxing evening project that you could then use day-to-day, you gotta consider the Pico Hat Pad kit by [Natalie the Nerd]. It fits squarely within the Pi Pico form-factor, giving you two buttons, one rotary encoder and two individually addressable LEDs to play with. Initially, this macropad was intended as an under-$20 device that’s also a soldering practice kit, and [Natalie] has knocked it out of the park.

You build this macropad out of a stack of three PCBs — the middle one connecting the Pi Pico heart to the buttons, encoders and LEDs, and the remaining ones adding structural support and protection. All the PCBs fit together into a neat tab-connected panel — ready to be thrown into your favorite PCB service’s shopping cart. Under the hood, this macropad uses KMK, a CircuitPython-based keyboard firmware, with the configuration open-source. In fact everything is open-source, just the way we like it.

If you find yourself with an unexpected affinity for macropads after assembling this one, don’t panic. It’s quite a common side-effect. Fortunately, there are cures, and it’s no longer inevitable that you’ll go bananas about it. That said, if you’re fighting the urges to go bigger, you can try a different hand-wireable Pico-based macropad with three more keys. Come to find that one not enough? Here’s a 2×4 3D printable one.

Now, if you eventually find yourself reading every single Keebin’ With Kristina episode as soon as it comes out, you might be too far gone, and we’ll soon find you spending hundreds of dollars building tiny OLED screens into individual keys — in which case, make sure you document it and share it with us!

Continue reading “A Fun Low-Cost Start For Your Macropad Hobby”

Mouse Enjoys Its Freedom

Although it took a little while to standardize on the two-button-with-scroll-wheel setup, most computers have used a mouse or mouse-like device to point at objects on the screen since the 80s. But beyond the standard “point and click” features of the mouse, there have been very few ground-breaking innovations beyond creature comforts. At least, until the “Space Mushroom” mouse from [Shinsaku Hiura] hit our tips line.

This mouse throws away most of the features a typical mouse might have in favor of a joystick-like interface that gives it six degrees of freedom instead of the usual two — while still being about mouse-sized and held in the hand. It doesn’t even have a way of mapping motion directly to movements on the screen. Instead, it maps each degree of freedom to a similar movement of the mouse itself using these three joystick sensors physically linked together, with some underlying programming to translate each movement into the expected movement on the screen.

While this might not replace a standard mouse for every use case anytime soon, it does seem to have tremendous benefit in 3D modeling software, CAD, or anything where orienting a virtual object is the primary goal. Plus, since there’s no limit to the number of mice that can be attached to a computer (beyond USB limitations) this mouse could easily be used in conjunction with a normal mouse much like macro keyboards being used alongside traditional ones.

Continue reading “Mouse Enjoys Its Freedom”