Mechanical Pencil Solder Feeder Hack

Want a better way to feed solder, but want to do it on the quick and cheap? Well [ptkrf] has a solution for you in an old instructables post we stumbled upon recently. You might have, or can inexpensively buy, a mechanical pencil which has the feeder button on the side rather than on top, as usual. With the pencil in hand, [ptkrf] shows you the simple procedure for modifying the pencil into a solder feeder. You might need to experiment with different size pencils and solders to get a perfect match. Common mechanical pencils come in sizes to accommodate 0.5, 0.7, and 0.9 mm leads, but there are bigger and smaller ones available. Perhaps one of those really large drafting lead holders could be repurposed as a solder dispenser for the bigger jobs.

We discussed a 3D printed solder feeder a few days ago, but if you don’t have one, this may be a good way to go. Thanks to [iliis] for sending in this tip.

The Right Equipment Makes A Difference For Digital Oscilloscope Music

We all love our cheap digital oscilloscopes, and with good reason. But if there’s one place where analog scopes still shine, it’s anywhere you need X-Y mode. Digitally sampling the inputs and mapping them on the screen as discrete points just isn’t the same as steering an electron beam around a CRT, making X-Y mode work on digital scopes — at least the affordable ones — somewhat lacking.

Thankfully, nobody told [Mark Hughes] that his digital scope would make a lousy X-Y display, so he just plunged ahead and figured out how to make it work anyway. The results are actually pretty good, but it took some doing. His setup begins with OsciStudio, an application built to take 3D shapes and animations and turn them into oscilloscope music. The output from that is piped to a USB sound card; [Mark] used a PreSonus Studio 26c, an adapter with DC-coupled inputs, which he found to be critical to getting good images. Also important was a USB isolator and good-quality cables, which greatly reduced jitter and made the image much more stable.

Displaying the image was as easy as connecting the left and right outputs from the sound card to the two scope inputs — [Mark] used a Keysight EDUX1052G — and setting it to X-Y mode. It took a fair amount of fiddling to get as far as he did, but we think the results speak for themselves. As for the sounds made by these images, he says it’s a bit like a hung sound card when a computer blue-screens. So, yeah — not exactly musical, but still an interesting way to have some fun with your digital scope.

A Simple One-Handed Solder Feeder

Soldering can get frustrating when you’re working fast. It often feels like you don’t have enough hands, particularly on jobs where you need to keep feeding solder in a hurry. To solve that issue, [mulcmu] developed a simple one-handed solder feeder.

The solder is fed out of the tip by simply dragging it with the thumb.

The intended use-case is for busy work like soldering long pin headers. The one-handed device allows solder to be continually fed while the other hand uses the soldering iron. It solves a long-running problem for [mulcmu], after their experiments with techniques inspired by TIG welding came to nought.

The design uses a pen-like form factor. A 3D-printed hollow tube has a wire ferrule inserted in the end, which serves as the tip of the device through which solder is fed. The tube has a cutaway, which allows the user to feed solder through using an easy motion of the thumb. The solder itself is fed from a spool in a regular bench top holder. If more slack is required in the solder feed, one simply pins the solder down in the device and tugs to draw more out.

If you find yourself regularly soldering repetitive jobs by hand, this could be a gamechanger for you. Those working in through-hole would be perhaps best served by this device. Meanwhile, if you’ve got nifty tool hacks of your own to share, don’t hesitate to let us know!

 

Workshop Dust Manifold Spreads The Suction Around

Let’s say you’re doing lots of woodwork now, and you’ve expanded your workshop with a few big tools. You’re probably noticing the sawdust piling up awfully quick. It would be ideal to have some kind of collection system, but you don’t want to buy a shop vac for every tool. This simple manifold from [Well Done Tips] is the perfect solution for you.

It’s a basic rig at heart, but nonetheless a useful one. It consists of a plywood frame with a shuttle that slides back and forth. The suction hose of your shop vac attaches to the shuttle. Meanwhile, the frame has a series of pipes leading to the dust extraction ports of your various tools around the shop. When you power up a tool, simply slide the manifold to the right position, and you’re good to go. Magnets will hold it in place so it doesn’t get jostled around while you work.

It’s a much cheaper solution than buying a huge dust extraction system that can draw from all your tools at once. If you’re just one person, that’s overkill anyway. This solution is just about sized perfectly for small home operators. Give it a go if you’re tired of sweeping up the mess and coughing your lungs out on the regular. Video after the break.

Continue reading “Workshop Dust Manifold Spreads The Suction Around”

A wooden spin coating machine sitting on a desk

Hackaday Prize 2023: Homebrew Spin Coater Makes Micrometer-Thin Layers

One of the great things about the Gearing Up challenge of the 2023 Hackaday Prize is that it lets you discover tools that you don’t encounter every day. We had never given much thought to spin coaters, for example, until we saw [Jeroen Delcour]’s neat homebrew example. As it turns out, spin coating has lots of applications in fields like optics, semiconductor manufacturing or even art projects, where a thin, even layer of a material is required on top of a flat substrate.

The basic idea behind a spin coater is simple: you dispense a few drops of a solution containing the material to be deposited on top of the thing you want to coat, then spin the thing around at a constant speed. The balance between the centripetal force and the liquid’s surface tension ensures that the liquid turns into a film with a consistent thickness all across the substrate. The solvent evaporates, and you’re left with a nice solid layer just a few microns thick.

[Jeroen] built his spin coater out of a brushless DC drone motor, a programmable motor controller, and an ESP32. A rotary pushbutton and an OLED form the user interface, allowing the user to select the speed and spin times. The electronics are all mounted inside a laser-cut wooden enclosure, with the motor sticking out the top, surrounded by a 3D-printed splash guard.

Professional spin coating equipment typically comes with a vacuum chuck to hold the sample in place, but [Jeroen] wasn’t too excited about implementing vacuum systems on a spinning platform and decided instead to simply clamp down the sample using screws in a laser-cut piece of acrylic. This works well enough, and is easy to customize for different sample sizes.

In the video embedded below, [Jeroen] experiments with applying a layer of silicone rubber onto a PCB. Spin coating is an essential step when you’re making your own semiconductor devices such as solar cells, though you might also need more complicated equipment such as an electron microscope. [Jeroen]’s spin coater is at least able to process much larger objects than one we saw earlier.

Continue reading “Hackaday Prize 2023: Homebrew Spin Coater Makes Micrometer-Thin Layers”

Digital Microscope With An On-Screen Multimeter

Some things go together, like chocolate and peanut butter. Others are more odd pairings, like bananas and bacon. We aren’t sure which category to put [IMSAI Guy]’s latest find in. He has a microscope with a built-in digital multimeter. You can see the video of the device in operation below.

The microscope itself is one of those unremarkable ten-inch LCD screens with some lights and a USB camera. But it also has jacks for test probes, and the display shows up in the corner of the screen. It is a normal enough digital meter except for the fact that its display is on the screen.

If you had to document test results, this might be just the ticket. If you are probing tiny little SMD parts under the scope, you may find it useful, too, so you don’t have to look away from what you are working on when you want to take a measurement. Although for that, you could probably just have a normal display in the bezel, and it would be just as useful.

At about $180 USD, it’s not exactly an impulse buy. We wonder if we’ll someday see an oscilloscope microscope. That might be something. These cheap microscopes are often just webcams with additional optics. You can do the same thing with your phone. If you don’t need the microscope, but you like the idea, can we interest you in a heads-up meter?

Continue reading “Digital Microscope With An On-Screen Multimeter”

A Current Sensing Coil That’s Open Ended

One of the joys of writing for Hackaday comes in learning new things which even after a long engineering background haven’t yet come your way. So it is with the Rogowski coil, an AC current sensing coil which is unlike conventional current transformers in that it’s open ended — in other words not needing to be closed around the conductor it’s measuring. [Weston Braun] has an interesting introduction to the subject, as part of his open source Rogowski coil based current probe.

The project itself is an amplifier and integrator that provides a voltage output proportional to the current sensed by the coil, but the real meat is in discovering the coils themselves. They’re a many-turn coil wound on a flexible former, forming in effect a toroidal inductor with a gap in it when bent into a circle. They’re for high frequencies only though, with the one in this project having a bandwidth from 888 Hz to 25 MHz. We don’t have any immediate need to non-intrusively measure current at those frequencies, but it’s something to know that we could.

This isn’t the first time a Rogowski coil has turned up on Hackaday though, back in 2011 we saw one used to measure a steep current impulse.