Your Engineering Pad In Browser

It was always easy to spot engineering students in college. They had slide rules on their belts (later, calculators) and wrote everything on engineering pads. These were usually a light brown or green and had a light grid on one side, ready to let you sketch a diagram or a math function. These days, you tend to sketch math functions on the computer and there are plenty of people willing to take your money for the software. But if you fire up your browser, head over to EngineeringPaper.xyz and you might save a little cash.

Although it looks a lot like a Jupyter notebook, the math cells in EngineeringPaper keeps track of units for you and allows you to query results easily. Want to read more? Luckily, there is an EngineeringPaper worksheet that explains how to use it. If you prefer your explanations in video form, check out their channel, including the video that appears below.

Continue reading “Your Engineering Pad In Browser”

Automate Handwritten Postcards With Robots

As someone notorious for not doing things the old-fashioned manual way, we’re not sure by [Shane] of Stuff Made Here was thinking when he promised to send out a few hundred handwritten letters. Predictably he built an automated production line for the task. Video after the break.

With “handwritten” and “automated” not being particularly compatible, [Shane] set out to create a robot to create believable handwritten letters, which is significantly harder than it may seem at first glance. It turns out that turning your handwriting into a font is too consistent to be believable, which led down the rabbit of generated handwriting. [Shane] first spend a ridiculous amount of time trying to implement a machine learning model for the task, only to find there’s already an open source library good enough to fool a forensic handwriting expert.

On the robot side, [Shane] used a pen plotter from Amazon that’s it’s actually cheaper than building one from scratch. With the “handwriting” taken care of, [Shane] set up an automated loading system with the industrial robot arm he also used for his CNC chainsaw. The feeders for the empty and full postcards are 3D printed with a spring-loaded mechanism to keep the top card at the same height all the time.

Although this project contained less custom hardware and software than [Shane’s] other projects, it served as an excellent reminder that it’s unnecessary to reinvent the wheel when building a car. It’s easy to get caught up in the small details of a project that don’t matter much in the final implementation and usage.

Continue reading “Automate Handwritten Postcards With Robots”

Battery Bot Makes Sure Cordless Tool Packs Are Always Topped Up

There was a time not that long ago when every tool was cordless. But now, cordless power tools have proliferated to the point where the mere thought of using a plain old wrist-twisting screwdriver is enough to trigger a bout of sympathetic repetitive injury. And the only thing worse than that is to discover that the batteries for your tools are all dead.

As [Lance] from the “Sparks and Code” channel freely admits, the fact that his impressive collection of batteries is always dead is entirely his fault, and that’s what inspired his automatic battery charging robot. The design is pretty clever; depleted batteries go into a hopper, under which is a 3D-printed sled. Batteries drop down into the sled, which runs the battery out from under the hopper to the charging station, which is just the guts of an old manual charger attached to a lead screw to adjust the height of the charging terminals for different size batteries. When the battery is charged, the sled pushes it a little further into an outfeed hopper before going back to get another battery from the infeed side.

Of course, that all vastly understates the amount of work [Lance] had to put into this. He suffered through a lot of “integration hell” problems, like getting the charger properly connected to the Arduino running the automation. But with a lot of tweaking, he can now just dump in a bunch of depleted packs and let the battery bot handle everything. The video after the break shows all the gory details.

Of course, there’s another completely different and much simpler solution to the dead battery problem.

Continue reading “Battery Bot Makes Sure Cordless Tool Packs Are Always Topped Up”

Own More Than One ‘Scope? You’ve Got Nothing On This Guy!

We’re guessing that quite a few of our readers have a surprising amount of redundant test gear, and we ourselves have to admit that more than one instrument adorns our benches. But we are mere dilettantes, amateurs if you will, compared to [Volke Kloke]. He’s got 350 of them in his average American home, and we have to say, among them are some beauties.

The linked newspaper article is sometimes frustratingly light on the details, but fortunately he has a website all of his own where we can all get immersed in the details. Of particular interest is an instrument which doesn’t even have a CRT, the General Radio 338 string oscillograph used a mirror drum to catch a standing wave in a tungsten wire, but there are plenty more. Is your first ‘scope among them?

As we now live in the age of cheap digital ‘scopes, at any surplus sale you’ll see plenty of CRT-based instruments going for relative pennies. Of those, the more recent and high-end ones are still extremely useful instruments, and it’s not just misty-eyed reminiscing to say that they remain a worthy addition to any bench.

Want to know about early ‘scope tech? We’ve taken a look before.

Handle Sheet Metal With The Power Of Microwave Oven Electromagnets

For those of us who don’t do it every day, handling sheet metal can be a nerve-wracking affair. Sheet metal is thin, heavy, and sharp, and one wrong move while handling it can have much the same result as other such objects, like guillotine blades. If only there was a way to lessen the danger.

Perhaps something like this electromagnetic sheet metal handler by [Lucas] over at “Cranktown City” would be useful in keeping one’s fingers and toes attached. Like many interesting builds, this one starts with the dismemberment of a couple of old microwave ovens, to liberate their transformers. Further dissection resulted in open-frame electromagnets, which when energized with a battery from a Ryobi cordless tool do a fine job sticking to stuff.

[Lucas] then harvested the battery connector from the cheapest possible Ryobi tool — an electric fan — and built a prototype, which worked well enough to proceed to a more polished version two. This one had the same guts in a nicely designed case, 3D-printed from lime green filament for that OEM look. The video below shows the design and build, as well as field testing. We have to say this gave us a bit of pause, especially when the battery popped out of one of the handlers and sent the sheet on a near-miss of [Lucas]’ toes. Close call there.

If you’re thinking that you’ve seen MOTs repurposed as electromagnets before, you’re right. Whether climbing like [Spider-Man], lifting heavy steel beams, or walking upside down, microwave oven transformers are the key.

Continue reading “Handle Sheet Metal With The Power Of Microwave Oven Electromagnets”

Zippy Plastic Welding

Plastic welding isn’t a new idea. But a recent video from [The Maker] shows an interesting twist. Given a broken piece of plastic, he secures it together with tape, machines out a channel around the cracks, and then melts zip ties into the channels. Honestly, although he mentions plastic welding and soldering, we aren’t sure this isn’t just simple gluing, but it did give us some ideas. Watch the video below and you’ll probably get the same ideas.

The ingenuity here isn’t necessarily using hot plastic to glue together two pieces — that’s just a hot glue gun, after all. Rather, it occurred to us that the key here was machining out the places where significant amounts of the hot plastic could bond the two pieces together. He cut the channels with a rotary tool, buffed them, and used a hot knife to give them some internal texture. But with a 3D printer, you could build these channels into parts that were made to interlock.

Continue reading “Zippy Plastic Welding”

Anodizing Titanium In Multiple Colors

[Titans of CNC Machining] wanted to anodize some titanium parts. They weren’t looking for a way to make the part harder or less prone to corrosion. They just wanted some color. As you can see in the video below, the resulting setup is much simpler than you might think.

The first attempt, however, didn’t work out very well. The distilled water and baking soda was fine, as was the power supply made of many 9V batteries. But a copper wire contaminated the results. The lesson was that you need electrodes of the same material as your workpiece.

Continue reading “Anodizing Titanium In Multiple Colors”