Retrotechtacular: How To Repair A Steam Locomotive

Steam locomotives, as a technological product of the 19th century, are not what you would imagine as fragile machines. The engineering involved is not inconsequential, there is little about them that is in any way flimsy. They need to be made in this way, because the huge energy transfer required to move a typical train would destroy lesser construction. It would however be foolish to imagine a locomotive as indestructible, placing that kind of constant strain on even the heaviest of engineering is likely to cause wear, or component failure.

A typical railway company in the steam age would therefore maintain a repair facility in which locomotives would be overhauled on a regular basis, and we are lucky enough to have a 1930s film of one for you today courtesy of the British London Midland and Scottish railway. In it we follow one locomotive from first inspection through complete dismantling, lifting of the frame from the wheels, detaching of the boiler, inspection of parts, replacement, and repair, to final reassembly.

We see steps in detail such as the set-up of a steam engine’s valve gear, and it is impressed upon us how much the factory runs on a tight time schedule. Each activity fits within its own time window, and like a modern car factory all the parts are brought to the locomotive at their allotted times. When the completed locomotive is ready to leave the factory it is taken to the paint shop to emerge almost as a new machine, ready for what seems like a short service life for a locomotive, a mere 130 thousand miles.

The video, which we’ve placed below the break, is a fascinating glimpse into the world of a steam locomotive servicing facility. Most Hackaday readers will never strip down a locomotive, but that does not stop many of them from having some interest in the process. Indeed, keen viewers may wish to compare this film with “A Study in Steel“, another film from the LMS railway showing the construction of a locomotive.

LMS Jubilee class number 5605, “Cyprus”, the featured locomotive in this film, was built in 1935, and eventually scrapped in 1964 as part of the phasing out of steam traction on British railways.

Continue reading “Retrotechtacular: How To Repair A Steam Locomotive”

Your Drone Is Cool, But It’s No Jet Fighter

There are some communities with whom our happy band of hardware hackers share a lot in common, but with whom we don’t often associate. The more workshop-orientated end of the car modification or railway modeler scenes, for instance, or the model aircraft fraternity. Many of these communities exist more for the activity than for the making, some of them dabble with building kits, but among them are a hard core of people who create amazing projects from scratch.

Take [Igor Negoda], for example. Not content with building just any model aircraft, he’s built his own from scratch, to his own design. And if designing for yourself what amounts to a scaled-down jet fighter wasn’t enough, he’s also built his own jet engine to power it. His videos are all in Russian so use YouTube’s subtitle feature if you’re not a Russian speaker, but they’re so good that if you couldn’t access the English translation you’d want to learn the language just to hear his commentary.

The video below the break shows us first a fast-taxi test using a ducted fan, then a full test flight with the jet engine. There is an explanation of the fuel system and the flight control systems, before an impressive flight from what appears to be a former Cold War-era runway. There are a few funny moments such as transporting a large model jet aircraft in a small hatchback car, but the quality of the work in a garage workshop shines through. Suddenly a multirotor doesn’t cut it any more, we want a jet aircraft like [Igor]’s!

Continue reading “Your Drone Is Cool, But It’s No Jet Fighter”

Star Wars Speeder’s Finishing Touch: Mirrors

[Super 73] make electric scooters, and they made some Star Wars Speeder Bikes with a twist for Halloween; adding some mirrored panels around the bottoms of the bikes made for a decent visual effect that requires no upkeep or fancy workings. Having amazed everyone with the bikes, they followed them up with a video of the build process.

The speeders are shells built around their Super 73 electric scooter, with bases of what looks like MDF sitting on anchor points. Onto the base platforms goes cardboard and expanding foam to create the correct shapes, which are then sanded then coated in fiberglass and bondo. Then it’s time for paint, weathering, and all the assorted bits and pieces needed to make the speeders as screen-accurate as possible. The real finishing touch are the mirrored panels to conceal the wheels and create a levitation illusion. As long as the mirrors are angled so that they reflect the pavement when viewed by a pedestrian, it works fairly well.

Top it off with costumes and a ride around town (with plenty of cameras of course, they naturally wanted to grab some eyeballs) and we have to say, the end result looks nifty. Both the showcase and making-of videos are embedded below.

Continue reading “Star Wars Speeder’s Finishing Touch: Mirrors”

3D Printed Hovercraft Takes To The Air

Instructables user [John_Hagy] and some classmates built an RC hovercraft as their final project in the Robotics Education Lab at NC State University. It’s a foam slab with a Hovership H2204X 2300Kv brushless motor inflating a skirt made out of ripstop nylon. Nylon is great here because it has a low friction coefficient and is nonporous to keep the air in. A second motor propels the craft, with a servo turning the whole motor assembly to steer. The team designed and 3D-printed fan holders which also help channel the air to where it’s supposed to go. Control is via a typical radio-control transmitter and receiver combo.

The project writeup includes a lot of fun detail like previous versions of the hovercraft as well as the research they undertook to learn how to configure the craft — clearly it’s their final paper put on the internet, and well done guys.

Needless to say, we at Hackaday can’t get enough of this sort of thing, as evidenced by this cool-looking hovercraft, this hovercraft made on a budget and this solar-powered ‘craft.

Trainspotting With Junk, For Science

[Douglas] hometown Goshen, Indiana takes the state’s motto ‘The Crossroads of America’ seriously, at least when it comes to trains. The city is the meeting point of three heavily frequented railroad tracks that cross near the center of town, resulting in a car-traffic nightmare. When everybody agrees that a situation is bad, it is time to quantify exactly how bad it is. [Douglas] stepped up for this task and delivered.

High tech train counting equipment

He describes himself as cheap, and the gear he used to analyze the railroad traffic at a crossing visible from his home certainly fits the bill: a decades-old webcam, a scratched telephoto lens and a laptop with a damaged hinge.

With the hardware in place, the next step was to write the software to count and time passing trains. Doing this in stable conditions with reasonable equipment would pose no problem to any modern image processing library, but challenged with variable lighting and poor image quality, [Douglas] needed another solution.

Instead of looking for actual trains, [Douglas] decided to watch the crossing signals. His program crops the webcam image and then compares the average brightness of the left and right halves to detect blinking. This rudimentary solution is robust enough to handle low light conditions as well as morning glare and passing cars.

The rest is verifying the data, making it fit for processing, and then combining it with publicly available data on car traffic at the affected intersections to estimate impact. The next council meeting will find [Douglas] well prepared. Traffic issues are a great field for citizen science as shown in Stuttgart earlier. If the idea of bolting old lenses to webcams intrigues you, we got you covered as well.

Printed Parts Make DIY Electric Longboard Possible

Appalled by expensive electric longboards, [Conor Patrick] still wanted one, and wanted it now. So — naturally — he converted an existing board into a sprightly electric version at a fraction of the cost.

[Patrick] is using a capable 380KV Propdrive motor, capable of pushing him up to 30mp/h! A waterproof 120A speed controller and 6000mAh, 22.2V LiPo battery slim enough to fit under the board give the motor the needed juice. He ended up buying the cheapest RF receiver and remote combo to control the board, but it fit the all-important “want electric long board now” criterion.

Continue reading “Printed Parts Make DIY Electric Longboard Possible”

Inductive Loop Vehicle Detector Gets Modernized

Much like George Lucas and the original Star Wars films, many of us may find that our passion projects are never quite finished, especially when new technology comes around or we just want to make some improvements for their own sake. [Muris] was featured a while back for a vehicle detecting circuit, but is back with some important upgrades to his project. (Which, luckily, do not include any horrible CGI aliens.)

For starters, the entire project has been reworked from the ground up. For anyone unfamiliar with the original project, the circuit detected a vehicle via an inductive loop and was able to perform a task like opening a gate. It now has two independent channels which are polled separately, yet has a reduced parts count which should make construction simpler. The firmware has also been reprogrammed, and in addition to sensing a vehicle’s presence can now also measure the speed of any vehicles passing by.

The complete list of improvements can be found on the project page, and an extensive amount of documentation is available on this if you want to try to roll out your own inductive loop vehicle detector. Of course, this isn’t the only way to detect a vehicle’s presence if inductive loops aren’t really your style.

Continue reading “Inductive Loop Vehicle Detector Gets Modernized”