Custom Machined Pump Keeps CNC Lubrication Under Control

Rub two pieces of metal against each other hard enough, and it won’t be long before they heat up sufficiently to cause problems. That’s especially true when one is a workpiece and one is a tool edge, and the problems that arise from failing to manage the heat produced by friction can cost you dearly.

The traditional way of dealing with this is by pumping heavy streams of liquid coolant at the workpiece, but while that works, it creates problems of its own. That’s where minimum quantity lubrication comes in. MQL uses a fine mist of lubricant atomized in a stream of compressed air, which saves on lube and keeps swarf cleaner for easier recycling. The gear needed for MQL can be pricey though, so [brockard] decided to add homebrew MQL to his CNC router, with great results.

The video below shows the whole process, from raw metal to finished system – skip ahead to about 12 minutes if you just want to see final testing, but be warned that you’ll be missing some high-quality machining. The finished pump is a double-piston design, with each side driven by a cam rotated by a servo. An Arduino controls the speed of the motor based on the current settings; the pump is turned on and off through G-code control of a relay.

The lubricant stream is barely visible in the video, as opposed to the sloshing mess of traditional flood coolants, and seems much more suitable for a hobbyist-grade CNC setup. Need to build a CNC router before you build this? You can do much worse than this one.

Continue reading “Custom Machined Pump Keeps CNC Lubrication Under Control”

Trick Shot Bot Flings Balls Into Wine Glass Every Time

We’ve heard of beer pong, but we’re not sure we’ve heard of wine pong. And certainly never wine pong automated with a ping pong ball throwing robot like this one.

There’s not a huge amount of detail available in the video below, and no build log per se. But [Electron Dust] has a few shots in the video that explain what’s going on, as well as a brief description in a reddit thread about the device. The idea is to spin a ball up to a steady speed and release it the same way every time. The rig itself is made of wood and spun by plain brushed DC motors – [Electron Dust] explains that he chose them over PWM servos to simplify things and eliminate uncertainty in the release point. The ball is retained by a pair of arms, each controlled by a pair of hobby servos. An Arduino spins along with everything else and counts 50 revolutions before triggering the servos to retract and release the ball. A glass positioned at the landing spot captures the ball perfectly once everything is dialed in.

Here’s hoping that build details end up on his blog soon, as they did for this audio-feedback juggling machine. And while we certainly like this project, it might be cool if it could aim the ball into the glass. Or it could always reposition the target on the fly.

Continue reading “Trick Shot Bot Flings Balls Into Wine Glass Every Time”

Plasma Globe Reveals Your Next Clue

If you like solving puzzles out in the real world, you’ve probably been to an escape room before, or are at least familiar with its concept of getting (voluntarily) locked inside a place and searching for clues that will eventually lead to a key or door lock combination that gets you out again. And while there are plenty of analog options available to implement this, the chances are you will come across more and more electronics-infused puzzles nowadays, especially if it fits the escape room’s theme itself. [Alastair Aitchison] likes to create such puzzles and recently discovered how he can utilize a USB powered plasma globe as a momentary switch in one of his installations.

The concept is pretty straightforward, [Alastair] noticed the plasma globe will draw significantly more current when it’s being touched compared to its idle state, which he measures using an INA219 current shunt connected to an Arduino. As a demo setup in his video, he uses two globes that will trigger a linear actuator when touched at the same time, making it an ideal multiplayer installation. Whether the amount of fingers, their position on the globe, or movement make enough of a reliable difference in the current consumption to implement a more-dimensional switch is unfortunately not clear, but definitely something worth experimenting with.

In case you’re planning to build your own escape room and are going for the Mad Scientist Laboratory theme, you’ll obviously need at least one of those plasma globes sparking in a corner anyway, so this will definitely come in handy — maybe even accompanied by something slightly larger? And for all other themes, you can always resort to an RFID-based solution instead.

Continue reading “Plasma Globe Reveals Your Next Clue”

Enforce Speed Limits With A Rusty Bike

They say you can’t manage what you can’t measure, and that certainly held true in the case of this bicycle that was used to measure the speed of cars in one Belgian neighborhood. If we understand the translation from Dutch correctly, the police were not enforcing the speed limit despite complaints. As a solution, the local citizenry built a bicycle with a radar gun that collected data which was then used to convince the police to enforce the speed limit on this road.

The bike isn’t the functional part of this build, as it doesn’t seem to have been intended to move. Rather, it was chosen because it is inconspicuous (read: rusty and not valuable) and simply housed the radar unit and electronics in a rear luggage case. The radar was specially calibrated to have less than 1% error, and ran on a deep cycle lead acid battery for around eight days. Fitting it with an Arduino-compatible shield and running some software (provided on the github page) is enough to get it up and running.

This is an impressive feat of citizen activism to provide the local police with accurate data to change a problem in a neighborhood. Not only was the technology put to good use, but the social engineering involved with hiding expensive electronics in plain sight with a rusty bicycle is a step beyond what we might have thought of as well.

Thanks to [Jo_elektro] for the tip!

Surfing Diorama Makes For A Neat Desk Toy

In 1994, Weezer famously said that “you take your car to work, I’ll take my board”. Obviously, for the office-bound, surfing is simply out of the question during the working day.  That doesn’t mean you can’t have a little fun with a desk toy inspired by the waves.

The crux of the build is a watery diorama, which interacts with a faux-surfboard. The diorama consists of a tank constructed out of plexiglas, sealed together to be watertight. It’s then filled with blue-dyed water, and topped off with baby oil. The tank is then mounted on a cam controlled by a servo, which rocks the tank back and forth to create waves. This is controlled by the motion of the rider on the plywood surfboard, which can be rocked to and fro on the floor thanks to its curved bottom. An Arduino built into the board monitors a three-axis accelerometer, and sends this information to the Arduino controlling the tank.

By riding the board, the user can shake the tank. Get the motion just right, and smooth rolling waves are your reward. Jerk around with no real rhythm, and you’ll just get messy surf. We reckon it would be even better with a little surfer floating in the tank, too. It’s a fun build, and one that might help stave off the negative health effects of sitting at a desk all day. You might prefer a more shocking desk toy, however. Video after the break.

Continue reading “Surfing Diorama Makes For A Neat Desk Toy”

Stylish Alarm Clock Rocks A VFD

There are a great many display technologies available if you wish to make a digital clock. Many hackers seem to have a penchant for the glowier fare from the Eastern side of the Berlin Wall. [ChristineNZ] is one such hacker, and managed to secure some proper Soviet kit for an alarm clock build.

The clock employs an IV-27M vacuum fluorescent display, manufactured in the now-defunct USSR. Featuring 13 seven-segment digits, it’s got that charming blue glow that you just don’t get with other technologies. A MAX6921AWI chip is used to drive the VFD, and an Arduino Mega is the brains of the operation. There’s also an HD44780-compliant LCD that can display further alphanumeric information, and a 4×4 keypad for controlling the device.

The best part of the build though is the enclosure. The VFD is encased in a glass tube, and supported at either end by 90-degree copper pipe couplers. These hold the VFD aloft, and also act as a conduit for the wires coming off each end of the tube. It’s all built on top of a wooden base that holds the rest of the electronics.

It’s an attractive build, and we love the floating look created by the glass tube construction. It’s not the first time we’ve seen old Russian VFDs, and we doubt it will be the last. Video after the break.

Continue reading “Stylish Alarm Clock Rocks A VFD”

Hackaday Links Column Banner

Hackaday Links: June 9, 2019

The Chicago Pile led to the Manhattan Project, which led to the atomic bomb. In Germany, there were similar efforts with less success, and now we have physical evidence from the first attempted nuclear reactor in Germany. In Physics Today, there’s a lovely historical retrospective of one of the ‘fuel cubes’ that went into one of Germany’s unsuccessful reactor experiments. This is a five-centimeter cube that recently showed up in the hands of a uranium collector. In the test reactor, six hundred of these cubes were strung along strings and suspended like a chandelier. This chandelier was then set inside a tub surrounded by graphite. This reactor never reached criticality — spectroscopy tells us the cube does not contain fission products — but it was the best attempt Germany made at a self-sustaining nuclear reaction.

The biggest failing of the Arduino is the pinout. Those header pins aren’t all on 0.1″ centers, and the board itself is too wide to fit on a single solderless breadboard. Here’s the solution to that problem. It’s the BreadShield, an Arduino Uno-to-Breadboard adapter. Plug an Uno on one end, and you get all the pins on the other.

There’s a new listing on AirBnB. this time from NASA. They’re planning on opening the space station up to tourism, starting at $35,000 USD per night. That’s a cool quarter mil per week, launch not included. The plan appears to allow other commercial companies (SpaceX and whoever buys a Boeing Starliner) to accept space tourists, the $35k/night is just for the stop at the ISS. Costs for launch and landing are expected to be somewhere between $20 and $60 Million per flight. Other space tourists have paid as much: [Dennis Tito], the first ‘fee-paying’ space tourist, paid $20M for a trip to the ISS in 2001. [Mark Shuttleworth] also paid $20M a year later. Earlier space ‘tourists’ paid a similar amount; Japanese journalist [Toyohiro Akiyama] flew to Mir at a cost of between $12M and $37M. Yes, the space station is now an AirBnB, but it’s going to cost twenty million dollars for the ride up there.

We’re getting into conference season, and there are two hardware cons coming up you should be aware of. The first is Hardwear.io, keynoted by [Christopher Tarnovsky], famous for DirecTV hacks. There will be other talks by [@TubeTimeUS] on cloning the Sound Blaster and [John McMaster] on dropping acid. All of this is going down this week at The Biltmore in Santa Clara, CA. The second upcoming conference of note is Teardown, the hardware conference put on by Crowd Supply. That’s in Portland, June 21-23, with a presence from the Church of Robotron.