Homebrew Biped Bot Shows Off Some Impressive Moves

We’ve seen enough DIY robotic platforms here on Hackaday to know that most of them take the literal and figurative path of least resistance. That is, they tend to be some type of wheeled rover. But of course, there are plenty of other forms of locomotion, should you want to take on something a bit more challenging.

This biped robot from [Tast’s Robots] is a perfect example. While it’s still technically wheeled, its self-balancing nature makes things quite a bit more complex. It doesn’t just stand upright either, it also has a unique ability to crouch down by rotating its motorized knees and hips. As demonstrated in the video below, it can even navigate relatively uneven terrain — pulling off such a smooth transition between hardwood and carpet is no easy feat for a self-balancing bot like this.

But the best part? It isn’t just fully open source, it’s also designed to be built with only the tools and capabilities available to the average home gamer. That means 3D printed components, wooden dowels, and RC car parts. Even the power supply, a Ryobi 18 V tool battery, is easy to source and relatively hacker friendly.

Just as impressive as the hardware is the suite of software packages developed to handle things like balancing, locomotion, and reverse kinematics. Each one is maintained and documented as their own individual Apache-licensed projects, making them far easier to utilize than they would be if it was all implemented as one monolithic system.

If you really want to ditch the wheels, we’ve seen a few biped walkers in the past. But frankly, none of them can compare to the capabilities and scope of this project.

Continue reading “Homebrew Biped Bot Shows Off Some Impressive Moves”

Robotic Biped Walks On Inverse Kinematics

Robotics projects are always a favorite for hackers. Being able to almost literally bring your project to life evokes a special kind of joy that really drives our wildest imaginations. We imagine this is one of the inspirations for the boom in interactive technologies that are flooding the market these days. Well, [Technovation] had the same thought and decided to build a fully articulated robotic biped.

Each leg has pivot points at the foot, knee, and hip, mimicking the articulation of the human leg. To control the robot’s movements, [Technovation] uses inverse kinematics, a method of calculating join movements rather than explicitly programming them. The user inputs the end coordinates of each foot, as opposed to each individual joint angle, and a special function outputs the joint angles necessary to reach each end coordinate. This part of the software is well commented and worth your time to dig into.

In case you want to change the height of the robot or its stride length, [Technovation] provides a few global constants in the firmware that will automatically adjust the calculations to fit the new robot’s dimensions. Of all the various aspects of this project, the detailed write-up impressed us the most. The robot was designed in Fusion 360 and the parts were 3D printed allowing for maximum design flexibility for the next hacker.

Maybe [Technovation’s] biped will help resurrect the social robot craze. Until then, happy hacking.

Continue reading “Robotic Biped Walks On Inverse Kinematics”

Hybrid Robot Walks, Transforms, And Takes Flight

[Project Malaikat] is a 3D printed hybrid bipedal walker and quadcopter robot, but there’s much more to it than just sticking some props and a flight controller to a biped and calling it a day. Not only is it a custom design capable of a careful but deliberate two-legged gait, but the props are tucked away and deployed on command via some impressive-looking linkages that allow it to transform from walking mode to flying mode.

Creator [tang woonthai] has the 3D models available for download (.rar file) and the video descriptions on YouTube contain a bill of materials, but beyond that there doesn’t seem to be much other information available about [Malaikat]. The creator does urge care to be taken should anyone use the design, because while the robot may be small, it does essentially have spinning blades for hands.

Embedded below are videos that show off the robot’s moves, as well as a short flight test demonstrating that while control was somewhat lacking during the test, the robot is definitely more than capable of actual flight.

Continue reading “Hybrid Robot Walks, Transforms, And Takes Flight”

Atlas Is Back With Some New Moves

Atlas is back, and this time he’s got some sweet parkour moves to show off. Every few months, Boston Dynamics gives us a tantalizing glimpse into their robotics development labs. They must be doing something right, as these videos never fail both to amaze and scare us. This time Atlas, Boston Dynamics humanoid bipedal robot, is doing a bit of light parkour — jumping over a log and from box to box. The Atlas we’re seeing here is the evolution of the same robot we saw at the DARPA Robotics Challenge back in 2013.

The video caption mentions that Atlas is using machine vision to analyze the position of markers on the obstacles. It can then plot the most efficient path over the obstructions. The onboard control system then takes over and uses Atlas’ limbs and torso for balance and momentum as the robot jumps up and over everything in its path.

It’s interesting to see how smoothly Atlas jumps the offset staircase, leaping left to right from step to step. The jumping is extremely smooth and fluid — it seems almost human.  You can even see Atlas’ let foot just barely clear the box on the second jump. We have to wonder how many times Atlas fell while the software was being perfected.

One thing is for sure, logs and boxes may slow down zombies, but they won’t help anymore when the robot uprising starts.

Continue reading “Atlas Is Back With Some New Moves”

Biped Bob Walks And Dances

If you have a few servo motors, an Arduino, and a Bluetooth module, you could make Biped Bob as a weekend project. [B. Aswinth Raj] used a 3D printer, but he also points out that you could have the parts printed by a service or just cut them out of cardboard. They aren’t that complex.

Each of Bob’s legs has two servo motors: one for the hip and one for the ankle. Of course, the real work is in the software, and the post breaks it down piece-by-piece. In addition to the Arduino code, there’s an Android app written using Processing. You can build it yourself, or download the APK. The robot connects to the phone via BlueTooth and provides a simple user interface to do a few different walking gaits and dances. You can see a few videos of Biped Bob in action, below.

This wouldn’t be a bad starter project for a young person or anyone getting started with robotics, especially if you have a 3D printer. However, it is fairly limited since there are no sensors. Then again, that could be version two, if you were feeling adventurous.

We have mixed feelings about the BlueTooth control. BlueTooth modules are cheap and readily available, but so are ESP8266s. It probably would not be very difficult to put Bob on WiFi and let him serve his own control page to any web browser.

If Bob meets Jimmy, he may find himself envious. However, Jimmy would be a little more challenging to build. We’ve actually seen quite a few walking ‘bots over the years. Continue reading “Biped Bob Walks And Dances”

Walk Your Pet Robot

Anyone who’s ever tried to build a bipedal robot will quickly start pulling their own hair out. There are usually a lot of servos involved, and controlling them all in a cohesive way is frustrating to say the least. [Mark] had this problem while trying to get his robot to dance, and to solve it he built a control system for a simple bipedal robot that helps solve this problem.

[Mark]’s robot has six servo motors per leg, for a total of 12 degrees of freedom. Commands are sent to the robot with an RC radio, and the control board that he built, called the Smart Servo Controller, receives the signals and controls the servos appropriately. There are 14 outputs for servos, operating at 12 bits and 50 Hz each, as well as 8 input channels. The servo controller can be programmed on a computer with user-selectable curves for various behaviors for each of the servos on the project. This eliminates the need to write cumbersome programs for simple robot movements, and it looks like it does a pretty good job!

Full disclosure: [Mark] currently has this project up on Kickstarter, but it is a unique take on complex robot control that could help out in a lot of different ways. Since you don’t need to code anything, it could lower the entry barrier for this type of project, possibly opening it up to kids or school projects. Beyond that, even veterans of these types of projects could benefit by not having to do as much brute-force work to get their creations up and moving around!

Continue reading “Walk Your Pet Robot”

Velociraptor Robot Ready To Run With The Big Dogs

velociraptor-robot

[Jongwon Park] and his team of students at the Korea Advanced Institute of Science and Technology have created a fast biped robot based upon the Velociraptor. Raptor weighs in at just 3Kg, and stands only 470mm tall, yet it is capable of running at 46 km/h. That’s almost as fast as Boston Dynamic’s Cheetah.

Raptor uses carbon fiber composite legs to absorb and release energy while running. The system is similar to that used in high performance prosthetic legs. A rotating tail assembly further helps to balance Raptor on rough terrain. We have to admit, the tail system does look a bit dangerous for any humans who might need to interact with the robot. It does work though, as evidenced by Raptor bounding over Styrofoam blocks.

The Raptor robot is quite impressive when running at full speed. Considering this project’s budget was nowhere near the resources of Boston Dynamics, it’s an amazing accomplishment. The video reminds us of  Boston Dynamics founder [Marc Raibert’s] early robots at the MIT Leg Lab. We can’t wait to see what this team produces in the future.

Continue reading “Velociraptor Robot Ready To Run With The Big Dogs”