IR Camera Is Excellent Hacking Platform

While there have been hiccups here and there, the general trend of electronics is to decrease in cost or increase in performance. This can be seen in fairly obvious ways like more powerful and affordable computers but it also often means that more powerful software can be used in other devices without needing expensive hardware to support it. [Manawyrm] and [Toble_Miner] found this was true of a particular inexpensive thermal camera that ships with Linux installed on it, and found that this platform was nearly perfect for tinkering with and adding plenty of other features to turn it into a much more capable tool.

The duo have been working on a SC240N variant of the InfiRay C200 infrared camera, which ships with a Hisilicon SoC. The display is capable of displaying 25 frames per second, making this platform an excellent candidate for modifying. A few ports were added to the device, including USB and MicroSD, and which also allows the internal serial port to be accessed easily. From there the device can be equipped with the uboot bootloader in order to run essentially anything that could be found on any other Linux machine such as supporting a webcam interface (and including a port of DOOM, of course). The duo doesn’t stop at software modifications though. They also equipped the camera with a lens, attached magnetically, which changes the camera’s focal length to give it improved imaging capabilities at closer ranges.

While the internal machinations of this device are interesting, it actually turns out to be a fairly capable infrared camera on its own as well. The hardware and software requirements for these devices certainly don’t need a full Linux environment to work, and while we have seen thermal cameras that easily fit in a pocket that are based on nothing any more powerful than an ESP32, it does tend to simplify the development process dramatically to include Linux and a little more processing power if you can.

Continue reading “IR Camera Is Excellent Hacking Platform”

Inside A Pair Of Smart Sunglasses

If you’re willing to spend $200 USD on nothing more than 100 grams of plastic, there are a few trendy sunglasses brands that are ready to take your money before you have time to think twice. Sure, you can get a pair of sunglasses for an order of magnitude less money that do the exact same job, but the real value is in the brand stamped into the plastic and not necessarily the sunglasses themselves. Not so with this pair of Ray-Bans, though. Unlike most of their offerings, these contain a little bit more than a few bits of stylish plastic and [Becky Stern] is here to show us what’s hidden inside.

At first glance, the glasses don’t seem to be anything other than a normal pair of sunglasses, if a bit bulky But on closer inspection they hide a pair of cameras and a few other bits of electronics similar to the Google Glass, but much more subtle. The teardown demonstrates that these are not intended to be user-repairable devices, and might not be repairable at all, as even removing the hinges broke the flexible PCBs behind them. A rotary tool was needed to remove the circuit boards from the ear pieces, and a bench vice to remove the camera modules from the front frame. We can presume these glasses will not be put back together after this process.

Hidden away inside is a pair of cameras, a Snapdragon quad-core processor, capacitive touch sensors, an amplifier for a set of speakers. Mostly this is to support the recording of video and playback of audio, and not any sort of augmented reality system like Google Glass attempted to create. There are some concerning ties with Facebook associated with this product as well which will be a red flag for plenty of us around here, but besides the privacy issues, lack of repairability, and lack of features, we’d describe it as marginally less useful as an entry-level smartwatch. Of course, Google Glass had its own set of privacy-related issues too, which we saw some clever projects solve in unique ways.

Continue reading “Inside A Pair Of Smart Sunglasses”

Building A Motorized Pan Tilt Rig For Filming

Today, anyone can shoot video because cameras are cheap and readily available. But if you want to do fancy Hollywood-style moving shots, you’ll need somebody to point the thing — or a machine to do it for you. [Giovanni Aggiustatutto] went the latter route with this mechanized pan-tilt build.

The build relies on stepper motors for clean and accurate movement on both axes. Belt drives are used to step down the output of the motors for greater torque. The pan-tilt mechanism itself is built from a combination of 3D printed parts paired with wooden components and a pair of aluminium tubes for rigidity. The whole assembly comes with a standard mount for use with a regular tripod. An Arduino Uno runs the show, using TMC2208 stepper drivers to command the motors. A control pad featuring a joystick and buttons is used for control, with an LCD to provide useful feedback to the user.

Pan-tilt systems are more typically used for security purposes, but we like the application to creative work here.

Continue reading “Building A Motorized Pan Tilt Rig For Filming”

Send This FPV Bot Into The Crawlspace To Do Your Dirty Work

The least pleasant space in most houses is likely to be the space below it. Basements tend to be dank, dusty, and full of too many things that have too many legs. And even worse than the full basement is the dreaded crawlspace, which adds claustrophobia to the long list of unpleasantries that lie below. Sadly, though, a crawlspace might be a handy place to run wires, and if you’re hesitant to delve too deeply, this FPV cable-laying rig might be something to keep in mind.

This one comes to us from [Old Alaska] with very little detail other than what’s in the brief video below. The setup is clear enough — a need to run an Ethernet cable from one side of the house to the other, and a crawlspace to do it in. Also in the toolkit was an RC rock crawler with a field-expedient FPV camera. With Breaking Bad-style access to the crawlspace through a few floorboards, [Old Alaska] was able to deploy the crawler dragging a Cat 5 cable behind it. The terrain under the house made the rock crawler a good choice, with four-wheel-drive, locking differentials, and an articulating frame. The bot’s-eye view also makes it clear that actually crawling in this rubble-strewn crawlspace would be a painful affair.

With very little drama, [Old Alaska] was able to navigate the crawler across the crawlspace to the outer wall of the house, where he could fish the wire out and complete the connection — no fuss, no muss, no bloody knees. The only quibble we’d have is not running an extra length of pull rope with the wire. You never know when it’ll come in handy.

The whole thing reminds us of a more tactical version of [Cliff Stoll]’s subterranean inventory management bot.

Continue reading “Send This FPV Bot Into The Crawlspace To Do Your Dirty Work”

Your Fuji Digital Camera Is Hackable

There was a time when a digital camera was a surprisingly simple affair whose on-board processor didn’t have much in the way of smarts beyond what was needed to grab an image from the sensor and compress it onto some storage. But as they gained more features, over time cameras acquired all the trappings of a fully-fledged computer in their own right, including full-fat operating systems and the accompanying hackability opportunities.

Prominent among camera manufacturers are Fujifilm, whose cameras it turns out have plenty of hacking possibilities. There’s something of a community about them, with all their work appearing in a GitHub repository, and a cracking April Fool in which a Fujifilm camera appears able to be coaxed into running DOOM.

Correction: We’ve since heard from creator [Daniel] who assures us that not only was the DOOM hack very much real, but that he’s released the instructions on how to run the classic shooter on your own Fujfilm X-A2.

Fujifilm cameras past 2017 or so run the ThreadX real-time operating system on a variety of ARM SoCs, with an SQLite data store for camera settings and some custom software controlling the camera hardware. The hackability comes through patching firmware updates, and aside from manipulating the built-in scripting language and accessing the SQLite database, can include code execution.

Don’t have a Fujifilm? They’re not the only hackable camera to be found.

Reviving A Legend: Mamiya RB67 Repair

The damaged parts in the camera are circled in red. Original graphic is from the Mamiya service manual.

When it comes to professional medium format analog cameras, the Mamiya RB67 is among the most well-known and loved, ever since its introduction in 1970. Featuring not only support for 120 and 220 film options, but also a folding and ‘chimney’ style view finder and a highly modular body, these are just some reasons that have made it into a popular – if costly – reflex system camera even today. This is one reason why [Anthony Kouttron] chose to purchase and attempt to repair a broken camera, in the hopes of not only saving a lot of money, but also to save one of those amazing cameras from the scrap heap. Continue reading “Reviving A Legend: Mamiya RB67 Repair”

Glowscope Reduces Microscope Cost By Orders Of Magnitude

As smartphones become more ubiquitous in society, they are being used in plenty of ways not imaginable even ten or fifteen years ago. Using its sensors to gather LIDAR information, its GPS to get directions, its microphone to instantly translate languages, or even use its WiFi and cellular radios to establish a wireless hotspot are all things which would have taken specialized hardware not more than two decades ago. The latest disruption may be in microscopy, as this build demonstrates a microscope that would otherwise be hundreds of thousands of dollars.

The microscope is a specialized device known as a fluorescence microscope, which uses a light source to excite fluorescent molecules in a sample which can illuminate structures that would otherwise be invisible under a regular microscope. For this build, the light is provided by readily-available LED lighting as well as optical filters typically used in stage lighting, as well as a garden-variety smartphone. With these techniques a microscope can be produced for around $50 USD that has 10 µm resolution.

While these fluorescence microscopes do have some limitations compared to units in the hundred-thousand-dollar range, perhaps unsurprisingly, they are fairly impressive for such a low-cost alternative. More details about these builds can also be found in their research paper published in Nature. Even without the need for fluorescence microscopy, a smartphone has been shown to be a fairly decent optical microscope, provided you have the right hardware to supplement the phone’s camera.