Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement?

Stephen Wolfram, inventor of the Wolfram computational language and the Mathematica software, announced that he may have found a path to the holy grail of physics: A fundamental theory of everything. Even with the subjunctive, this is certainly a powerful statement that should be met with some skepticism.

What is considered a fundamental theory of physics? In our current understanding, there are four fundamental forces in nature: the electromagnetic force, the weak force, the strong force, and gravity. Currently, the description of these forces is divided into two parts: General Relativity (GR), describing the nature of gravity that dominates physics on astronomical scales. Quantum Field Theory (QFT) describes the other three forces and explains all of particle physics. Continue reading “Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement?”

Modular Robotics: When You Want More Robots In Your Robot

While robots have been making our lives easier and our assembly lines more efficient for over half a century now, we haven’t quite cracked a Jetsons-like general purpose robot yet. Sure, Boston Dynamics and MIT have some humanoid robots that are fun to kick and knock over, but they’re far from building a world-ending Terminator automaton.

But not every robot needs to be human-shaped in order to be general purpose. Some of the more interesting designs being researched are modular robots. It’s an approach to robotics which uses smaller units that can combine into assemblies that accomplish a given task.

We’ve been immersing ourselves in topics like this one because right now the Robotics Module Challenge is the current focus of the Hackaday Prize. We’re looking for any modular designs that make it easier to build robots — motor drivers, sensor arrays, limb designs — your imagination is the limit. But self contained robot modules that themselves make up larger robots is a fascinating field that definitely fits in with this challenge. Join me for a look at where modular robots are now, and where we’d like to see them going.

Continue reading “Modular Robotics: When You Want More Robots In Your Robot”

Beyond Conway: Cellular Automata From All Walks Of Life

There’s a time in every geek’s development when they learn of Conway’s Game of Life. This is usually followed by an afternoon spent on discovering that the standard rule set has been chosen because most of the others just don’t do interesting things, and that every idea you have has already been implemented. Often enough this episode is then remembered as ‘having learned about cellular automata’ (CA). While important, the Game of Life is not the only CA out there and it’s not even the first. The story starts decades before Life’s publication in 1970 in a place where a lot of science happened at that time: the year is 1943, the place is Los Alamos in New Mexico and the name is John von Neumann.

Recap: What is a CA?

A cyclic CA making some waves

The ‘cellular’ part in the name comes from the fact that CAs represent a grid of cells that can be in a number of defined states. The grid can have any number of dimensions, but with three dimensions the visual representation starts to get into the way, and above that most human brains stop working, so two-dimensional grids are the most common — with the occasional one-dimensional surprise. The cells’ states are in most cases discrete but a subset of continuous CAs exists. During the operation of a CA the future state of every cell in the grid is determined from each cells state according to a set of rules which in most cases take into account the states of neighboring cells.

Continue reading “Beyond Conway: Cellular Automata From All Walks Of Life”

Cellular Automata Explorer

Well all know cellular automata from Conway’s Game of Life which simulates cellular evolution using rules based on the state of all eight adjacent cells. [Gavin] has been having fun playing with elementary cellular automata in his spare time. Unlike Conway’s Game, elementary automata uses just the left and right neighbors of a cell to determine the next cell ahead in the row. Despite this comparative simplicity, some really complex patterns emerge, including a Turing-complete one.

[Gavin] started off doing the calculations by hand for fun. He made some nice worksheets for this. As we can easily imagine, doing the calculations by hand got boring fast. It wasn’t long before his thoughts turned to automating his cellular automata. So, he put together an automatic cellular automator. (We admit, we are having a bit of fun with this.)

This could have been a quick software project but half the fun is seeing the simulations on a purpose-built ecosystem. The files to build the device are hosted on Thingiverse. Like other cellular automata projects, it uses LED matrices to display the data. An Arduino acts as the brain and some really cool retro switches from the world’s most ridiculously organized electronics collection finish the look of the project.

To use, enter the starting condition with the switches at the bottom. The code on the Arduino then computes and displays the pattern on the matrix. Pretty cool and way faster than doing it by hand.

Old Fax Machine Shows Signs Of Life

fax1

[Dmitry] is a Moscow based artist. He’s also a an avid circuit bender and hardware hacker. His latest project is entitled “signes de vie” or signs of life. [Dmitry] started with an Arduino and an old thermal fax machine. He removed the thermal print head and replaced it with a row of 10 LEDs. These old fax machines would use rolls of paper, cutting each sheet of as it was printed. [Dmitry] kept the roll system, but treated his paper with fluorescent dye. As the paper passes under the LEDs, it pauses for a moment and the LEDs are flashed. This causes a ghostly glow to remain on the paper for several minutes as the next rows are printed.

While [Dmitry] could have made this the world’s biggest tweet printer, he chose to go a more mathematical route. Each printed row of dots represents a generation of one-dimensional cellular automata. Cellular automation is a mathematical model of generations of cells. All cells exist on a grid, and can be alive or dead. The number of neighboring live cells determines if any given cell will live on to the next generation. One common implementation of cellular automation is Conway’s Game of Life. In [Dmitry’s] implementation, a bank of switches select which of the 256 common cellular automata rules controls the colony. A second bank selects how long each generation lasts – from 1 to 18 seconds.

We really like how the paper becomes a printed, yet temporary history of the colony. [Dmitry] doesn’t say if he’s using a single long strip of paper, or if he created a loop. We’re hoping for the latter. Finally a useful implementation of the old black fax loop prank.

Continue reading “Old Fax Machine Shows Signs Of Life”

‘conus’ Mixes Media, Math And Mollusks

conusCA

We love art installations that use technology in ways probably never before considered, and Moscow media artist [Dimitry Morozov] has done just that with ‘conus’, which reads the surface of mollusk shells and translates the data into real-time audio and video. These shells are unique; their pigmentation generates natural cellular automata. (If you’ve never heard of cellular automata, Conway’s Game of Life is a good example, where a rule set determines whether a cell lives, dies, or regenerates.

[Dimitry’s] installation uses homemade digital microscopes to scan the naturally-created cellular automata of several shells, each rotating on its own disc. As the shell spins, the scans from the microscopes are fed into an algorithm which transforms the signals into data for multiple audio channels and three video monitors. You can watch the mathematical translation of the biologically-formed patterns in a video after the break.

Check out the MSP430 game of life shield for another example of cellular automata.

Continue reading “‘conus’ Mixes Media, Math And Mollusks”