3D Printed Swirl Rocket Injector Turns Up The Heat

Conceptually speaking, a liquid propellant rocket engine is actually a very simple piece of hardware. All you need to do is spray your fuel and oxidizer into the combustion chamber at the proper ratio, add a spark, and with a carefully designed nozzle you’re off to the races. Or the Moon, as the case may be. It’s just that doing it in the real-world and keeping the whole thing from exploding for long enough to do some useful work is another story entirely.

Taking the process one step at a time, [Luke Walters] has been working on a 3D printed injector that tackles the first half of the problem. After nearly a dozen different prototypes, he’s come up with a printable injector design that atomizes the fuel and combines it with pressurized air at a suitable ratio for combustion. As you can see in the video at the break, it’s certainly capable of generating some impressive fireballs.

A cloud of highly atomized alcohol from the injector.

The internal passages of the injector have been designed in such a way that fuel (91% isopropyl alcohol) and air are spinning in opposite directions when they meet. This promotes more complete mixing, which in turn leads to a more efficient burn. Originally developed in the 1930s, so-called “swirl injectors” of this type were one of the key technological advancements made by Germany’s V-2 rocket program. Some ideas never go out of style.

Since the injector only touches the fuel and air prior to ignition, it doesn’t need to be particularly heat resistant. To be on the safe side [Luke] has printed the part in PETG at 100% infill, but in reality the flame front is far enough away that temperature isn’t much of a concern. That said, he does hope to eventually fit these injectors into some kind of combustion chamber, which is where things will start getting toasty.

To be clear this is not a rocket engine, and it produces no appreciable thrust. Turning a big flame into a useful means of propulsion is where things get tricky, almost as though it’s rocket science or something. But that doesn’t mean it can’t be done by suitably ambitious hackers.

Continue reading “3D Printed Swirl Rocket Injector Turns Up The Heat”

Burning Propane Beautifully Illustrates How A Tesla Valve Works

When you hear the name “Tesla”, chances are good that thoughts turn instantly to the company that’s trying to reinvent the motor vehicle and every industry that makes it possible. While we applaud the effort, it’s a shame that they chose to appropriate the surname of a Serbian polymath as their corporate brand, because old [Nikola] did so many interesting things in his time, and deserves to be remembered in his own right.

Take the Tesla valve. In essence a diode for fluids, the Tesla valve uses a tortuous path to allow flow in one direction but severely restrict it in the other. Understanding how it works isn’t necessarily intuitive, though, which is why [NightHawkInLight] chose to demonstrate the Tesla valve principle with exploding propane. It’s not new territory to him; we’ve covered his propane-powered rifle in the past.

The swirling blue and green flame front in those experiments make burning propane the perfect working fluid to demonstrate how the Tesla valve works. The video below tells the tale, with high-speed footage showing the turbulence that restricts the reverse flow. The surprise discovery is that in the forward direction, the burning gas actually seems to accelerate as it moves down the valve; hypersonic Tesla plasma cannon, anyone?

We’ve seen Tesla valves before, including one made from a “Shrinky Dink”. That did a pretty good job of visualizing the flow patterns that make the valve work, but there’s a huge showmanship gap between tiny channels filled with colored water and the explosive decomposition of a fuel-air mix. It’s a bit riskier, and standard “don’t try this at home” disclaimers apply, but luckily [NightHawkInLight] still has his eyebrows, so he must be doing something right.

Continue reading “Burning Propane Beautifully Illustrates How A Tesla Valve Works”

Nerf Blaster Goes Next-level With Propane Power

There are no shortage of Nerf gun mods out there. From simply upgrading springs to removing air restrictors, the temptation of one-upping your opponents in a Nerf war speaks to many!

Not content with such lowly modifications [Peter Sripol] decided that his blaster needed to see some propane action.

[Peter] completely stripped out the existing firing mechanism before creating a new combustion chamber from some soldered copper pipe. He added a propane tank and valve on some 3D-printed mounts, and replaced the barrel to produce some intense firepower.

To ignite the fuel inside the combustion chamber, some taser circuitry creates the voltage needed to jump the spark gap inside whilst an added switch behind the trigger kicks off the whole process. After experimenting with different ignition methods, [Peter] eventually found that positioning the spark in the center of the chamber provided the best solution for efficient combustion and non-deafening volume.

Though highly dependant on the amount of gas in the chamber during combustion, the speed of the dart was able to reach a maximum of 220 fps – that’s a whopping 150mph!

Next follows the obligatory sequence for all souped-up Nerf guns:  slow motion annihilation of various food items and beverage containers. To obtain some extra punch, some custom Nerf darts were 3D-printed, including one with a fearsome nail spear-head.

We strongly advise against taking up [Peter] on any offer of Nerf based warfare, but you can check out his insane plane adventures or last winter’s air sled.

Continue reading “Nerf Blaster Goes Next-level With Propane Power”

Retrotechtacular: The J-57 Afterburner Engine

The J-57 afterburner engine appeared in many airplanes of notable make, including the F-101, -102, and -103. This USAF training film shows the parts of the J-57, explains the complex process by which the engine produces thrust, and describes some maintenance and troubleshooting procedures.

The name of this game is high performance. Precision thrust requires careful rigging of the engine’s fuel control linkage through a process called trimming. Here, the engine fuel control is adjusted with regard to several different RPM readings as prescribed in the manual.

One of the worst things that can happen to a J-57 is known as overtemping. This refers to high EGT, or exhaust gas temperature. If EGT is too high, the air-fuel ratio is not ideal. Troubleshooting a case of high EGT should begin with a check of the lines and the anti-icing valve. If the lines are good and the valve is closed, the instruments should be checked for accuracy. If they’re okay, then it’s time for a pre-trimming inspection.

In addition to EGT, engine performance is judged by RPM and PP7, the turbine discharge pressure. If RPM and PP7 are within spec and the EGT is still high, the engine must be pulled. It should be inspected for leaks and hot spots, and the seals should be examined thoroughly for cracks and burns. The cause for high EGT may be just one thing, or it could be several small problems. This film encourages the user to RTFM, which we think is great advice in general.

Continue reading “Retrotechtacular: The J-57 Afterburner Engine”

Retrotechtacular: The Diesel Story

The diesel engine was, like many things, born of necessity. The main engine types of the day—hot bulb oil, steam, coal gas, and gasoline—were not so thermally efficient or ideal for doing heavy-duty work like driving large-scale electrical generators.  But how did the diesel engine come about? Settle in and watch the 1952 documentary “The Diesel Story“, produced by Shell Oil.

The diesel engine is founded on the principle of internal combustion. Throughout the Industrial Age, technology was developing at breakneck pace. While steam power was a great boon to many burgeoning industries, engineers wanted to get away from using boilers. The atmospheric gas engine fit the bill, but it simply wasn’t powerful enough to replace the steam engine.

hot bulb oil engineBy 1877, [Nikolaus Otto] had completed work on his coal gas engine built on four-stroke theory. This was the first really useful internal combustion engine and the precursor of modern four-stroke engines. It was eventually adapted for transportation with gasoline fuel. In 1890, the hot bulb oil engine was developed under the name Hornsby-Akroyd and primarily used in stationary power plants. Their flywheels had to be started manually, but once the engine was going, the bulb that drove combustion required no further heating.

Continue reading “Retrotechtacular: The Diesel Story”