Video Game Preservation Through Decompilation

Unlike computer games, which smoothly and continuously evolved along with the hardware that powered them, console games have up until very recently been constrained by a generational style of development. Sure there were games that appeared on multiple platforms, and eventually newer consoles would feature backwards compatibility that allowed them to play select titles from previous generations of hardware. But in many cases, some of the best games ever made were stuck on the console they were designed for.

Now, for those following along as this happened, it wasn’t such a big deal. For gamers, it was simply a given that their favorite games from the Super Nintendo Entertainment System (SNES) wouldn’t play on the Nintendo 64, any more than their Genesis games could run on their Sony PlayStation. As such, it wasn’t uncommon to see several game consoles clustered under the family TV. If you wanted to go back and play those older titles, all you had to do was switch video inputs.

But gaming, and indeed the entertainment world in general, has changed vastly over the last couple of decades. Telling somebody today that the only way they can experience The Legend of Zelda: A Link to the Past is by dragging out some yellowed thirty-odd year old console from the attic is like telling them the only way they can see a movie is by going to the theater.

These days, the expectation is that entertainment comes to you, not the other way around — and it’s an assumption that’s unlikely to change as technology marches on. Just like our TV shows and movies now appear on whatever device is convenient to us at the time, modern gamers don’t want to be limited to their consoles, they also want to play games on their phones and VR headsets.

But that leaves us with a bit of a problem. There are some games which are too significant, either technically or culturally, to just leave in the digital dust. Like any other form of art, there are pieces that deserve to be preserved for future generations to see and experience.

For the select few games that are deemed worth the effort, decompilation promises to offer a sort of digital immortality. As several recent projects have shown, breaking a game down to its original source code can allow it to adapt to new systems and technologies for as long as the community wishes to keep them updated.

Continue reading “Video Game Preservation Through Decompilation”

Supercon 2023: Bringing Arcade Classics To New Hardware

The processing power of modern game consoles is absolutely staggering when compared to the coin-op arcade machines of the early 1980s. Packed with terabytes of internal storage and gigabytes of RAM, there’s hardly a comparison to make with the Z80 cabinets that ran classics like Pac-Man. But despite being designed to pump out lifelike 4K imagery without breaking a virtual sweat, occasionally even these cutting-edge consoles are tasked with running one of those iconic early games like Dig Dug or Pole Position. Nostalgia is a hell of a drug…

As long as there are still demand for these genre-defining games, developers will have to keep figuring out ways to bring them to newer — and vastly more complex — systems. Which is precisely the topic of Bob Hickman’s 2023 Supercon talk, The Bits and Bytes of Bringing Arcade Classics to Game Consoles. Having spent decades as a professional game developer, he’s got plenty of experience with the unique constraints presented by both consoles and handhelds, and what it takes to get old code running on new silicon.

Continue reading “Supercon 2023: Bringing Arcade Classics To New Hardware”

Decompiling Sonic Runners

Usually, when you hear about games being decompiled and rebuilt, the games are often decades-old relics, loving and saved from the ravages of time. [MattKC] recently set out to decompile the 2015 game Sonic Runners.

The game was a 2D endless runner released on mobile platforms. Despite getting praise for the gameplay, it received mixed reviews for the pop-up ads and pay-to-play elements. A little over a year later, the game was discontinued. However, the game required a constant online connection, so once the servers were offline, it rendered the over five million downloads unplayable.

A team of developers worked to reverse engineer the server, and with a little bit of binary hacking, the client could be patched to connect to a community-hosted server instead. However, as phones with notched displays came out and suggestions for improvements stacked up, the community realized a new client would bring immense benefits. Compared to many decompilation projects, Sonic Runners was pretty easy as it uses Unity, which means most of the code is in C#. Unfortunately, the build of Unity used by the game is from 2012, meaning many of the tools designed for much later versions of Unity were inoperable.

However, one native code library called UnmanagedProcess was designed to confuse reverse engineering efforts. The library handled AES encryption and communication with the server. Luckily, the library was a later addition, and earlier versions of its functions still lingered in the C# code. Since an open source server already existed, it was trivial to validate the changes. Additionally, all the shaders were in OpenGL Shading Language (GLSL), which meant rewriting them in High-Level Shading Language (HLSL) and checking that they matched the original GLSL when building for Android.

Now the client has new game modes, no ads, and a proper offline mode. The community continues adding new features and refining the game, which is very satisfying. If you’re curious about reverse engineering, [Matthew Alt] can help you get started.

Continue reading “Decompiling Sonic Runners

The Legend Of Zelda: Decompiled

Keeping source code to programs closed is something that is generally frowned upon here for plenty of reasons. Closed source code is less secure and less customizable, but unfortunately we won’t be able to convince everyone of the merits of open source code any time soon. On the other hand, it is possible to decompile some of those programs whose source remains behind locked doors in an attempt to better understand that code, and one of the more impressive examples of that of late is this project which has fully decompiled The Ocarina of Time.

To get started with the code for this project, one simply needs to clone the Git repository and then use a certain set of software tools (depending on the user’s operating system) to compile the ROM from the source code. From there, though, the world is your rupee-filled jar. Like we’ve seen from other decompiled games, any number of enhancements to the original game can be made including increasing the frame rate, improving the graphics, or otherwise adding flourishes that wouldn’t otherwise be there.

The creators of this project do point out that this is still a work-in-progress as only one of the 18 versions have been completed, but the fact that the source code they have been able to decompile builds a fully-working game when recompiled speaks to how far along it’s come. We’ve seen similar processes used for other games before that also help to illustrate how much improvement is possible when re-writing old games from their source code.

Thanks to [Lazarus] for the tip!

Continue reading “The Legend Of Zelda: Decompiled”

Camera Hack Peels Back Layers Of Embedded Linux

Embedded Linux devices are everywhere these days, and sooner or later, you’re going to want to poke around in one of them. But how? That’s where posts like this one from [Felipe Astroza] come in. While his work is focused on the Foscam C1 security camera, the techniques and tools he outlines here will work on all sorts of gadgets that have a tiny penguin at their core.

Rather than trying to go in through the front door, [Felipe] starts his assault with the nuclear option: removing the SPI MX25L12835F flash chip from the camera’s PCB and dumping its contents with a Raspberry Pi. From there he walks through the use of different tools to determine the partition scheme of the chip and eventually extract passwords and other interesting bits of information from the various file systems within.

Getting ready to remove the flash chip.

That alone would be worth the read, but things really get interesting once [Felipe] discovers the FirmwareUpgrade program. Since the Foscam’s software updates are encrypted, he reasons that reverse engineering this binary would uncover the key and allow for the creation of custom firmware images that can be flashed through the stock interface.

Further investigation with Ghidra and friends identifies an interesting shared library linked to the executable in question, which is then disassembled in an effort to figure out how the key is being obfuscated. We won’t ruin the surprise, but [Felipe] eventually gets what he’s after.

This isn’t the first time [Felipe] has played around with the firmware on these Internet connected cameras, and we dare say it won’t be his last. For those who are really into tinkering with these sort of devices, it’s not unheard of to install a socket for the flash chip to make software modifications faster and easier.

Giving Recalled Fitness Trackers A Second Chance

When it was released back in 2012, the Basis B1 fitness tracker was in many ways ahead of its time. In fact, the early smartwatch was so impressive that Intel quickly snapped up the company and made it the cornerstone of their wearable division. Unfortunately a flaw in their next watch, the Basis Peak, ended up literally burning some wearers. Intel was forced to recall the whole product line, and a year later dissolved their entire wearable division.

Given their rocky history, it’s probably no surprise that these gadgets can be had quite cheaply on the second hand market. But can you do anything with them? That’s what [Ben Jabituya] recently decided to find out, and the results of his experiments certainly look very promising. So far he hasn’t found a way to activate a brand-new Basis watch, but assuming you can get your hands on one that was actively being used when Intel pulled the plug, his hacks can be used to get it back up and running.

Examining the downloaded sensor logs.

The Basis Android application has long since been removed from the Play Store, but [Ben] said it wasn’t too hard to find an old version floating around on the web. After decompiling the application he discovered the developers included a backdoor that lets you configure advanced options that would normally be hidden.

How do you access it? As a reminder of the era in which the product was developed, you simply need to log into the application using Jersey and Shore as the username and password, respectively.

Between the developer options and API information he gleaned from the decompiled code, [Ben] was able to create a faux Basis authentication server and point the application to it. That let him get past the login screen, after which he was able to sync with the watch and download its stored data. Between examinations with a hex editor and some open source code that was already available online, he was able to write a Python script for parsing the data which he’s been kind enough to share with the world.

We’re very pleased to see an open source solution that not only gets these “bricked” smartwatches back online, but allows the user to keep all of the generated data under their own control. If you’d like to do something similar with a device that doesn’t have a history of releasing the Magic Smoke, the development of an open source firmware for more modern fitness trackers might be of interest.

Continue reading “Giving Recalled Fitness Trackers A Second Chance”

Debugging An Arduino With An Arduino

As every Hackaday reader knows, and tells us at every opportunity in the comments, adding an Arduino to your project instantly makes it twice as cool. But what if, in the course of adding an Arduino to your project, you run into a problem and need to debug the code? What if you could use a second Arduino to debug the first? That would bring your project up to two Arduinos, instantly making it four times as awesome as before you started! Who could say no to such exponential gains?

Debugging an ATTiny85

Not [Wayne Holder], that’s for sure. He writes in to let us know about a project he’s been working on for a while that allows you to debug the execution of code on an Arduino with a second Arduino. In fact, the target chip could even be another AVR series microcontroller such as a the ATTiny85. With his software you can single-step through the code, view and modify values in memory, set breakpoints, and even disassemble the code. Not everything is working fully yet, but what he has so far is very impressive.

The trick is exploiting a feature known as “debugWIRE” that’s included in many AVR microcontrollers. Unfortunately documentation on this feature is hard to come by, but with some work [Wayne] has managed to figure out how most of it works and create an Arduino Sketch that lets the user interact with the target chip using a simple menu system over the serial monitor, similar to the Bus Pirate.

[Wayne] goes into plenty of detail on his site and in the video included after the break, showing many of the functions he’s got working so far in his software against an ATTiny85. If you spend a lot of time working on AVR projects, this looks like something you might want to keep installed on an Arduino in your tool bag for the future.

Debugging microcontroller projects can be a huge time saver when your code starts running on real hardware, but often takes some hacking to get working.

Continue reading “Debugging An Arduino With An Arduino”