The $300,000 3D Printed Car

We’ve noticed an uptick in cars–especially pricey ones–using 3D-printed parts. However, these are usually small and nonstructural parts with a few exceptions. This isn’t the case with the 2024 Cadillac Celestiq. The $300,000 luxury electric vehicle boasts 115 3D-printed parts, according to a post on [TheDrive].

It appears part of the drive–no pun intended–is to allow ultra customizations for people who need more than a car that costs more than a quarter of a million dollars. For example, if you buy an Escalade — another Cadilac vehicle — you have to tolerate that the switches that operate the window are the same as Joe Sixpack has in his Tahoe. Not so, the Celestiq since it has 3D printed switches that could even be customized for a specific owner. The post mentions that the large steering wheel trim is all printed so having, for example, your name, family crest, or company logo embedded in it would be feasible.

Continue reading “The $300,000 3D Printed Car”

Young Inventor Builds Motor Without Rare Earths

[Robert Sansone] is a 17-year-old from Florida and, like most of us, he likes to tinker. He’s apparently got the time for it because he’s completed at least 60 projects ranging from animatronic hands to a high-speed go-kart. However, his interest in electric vehicles coupled with his understanding of the issues around them led him to investigate synchronous reluctance motors — motors that don’t depend on expensive rare earth magnets. His experiments have led to a novel form of motor that has greater torque than existing designs.

Rare earths are powerful but expensive, costing much more than common metals like copper or steel. Traditionally, synchronous reluctance motors use steel rotors and air gaps and exploit the difference in reluctance — a term for magnetic resistance– to generate rotation. [Robert’s] idea was to replace the air gap with a different material to increase the ratio of reluctance between the rotor and the gap. Reconfiguring the motor to a more traditional configuration shows startling results: the new design generated almost 40% more torque and did so more efficiently, as well.

His work has earned him first prize, and $75,000, in this year’s Regeneron International Science and Engineering Fair. It took 15 tries to get the motor to its current state, something made easier with 3D printing. There are plans for a 16th version that [Robert] hopes will perform even better. We can’t wait to see what he’ll do next.

Electric vehicles have made people look into many motor design topologies. The reluctance motor has been around for a long time, but controlling them has become significantly easier. That’s true of many kinds of motors.

Continue reading “Young Inventor Builds Motor Without Rare Earths”

Toddler EV Gets Big Boy Battery Upgrade

No matter the type of vehicle we drive, it has a battery. Those batteries wear out over time. Even high end EV’s have batteries with a finite life. But when your EV uses Lead Acid batteries, that life is measured on a much shorter scale. This is especially true when the EV is driven by a driver that takes up scarcely more space in their EV than a stuffed tiger toy! Thankfully, the little girl in question has a mechanic:

A 3d printed adapter sends go-juice to the DC-DC converter

Her daddy, [Brian Lough], who documented the swift conversion of his daughter’s toy truck from Lead Acid to Li-Ion in the video which you can see below the break.

Facing challenges similar to that of actual road worthy passenger vehicles, [Brian] teamed up with [bitluni] to solve them. The 12 V SLA battery was being replaced with a 20 V Li-Ion pack from a power tool. A 3d printed adapter was enlisted to break out the power pins on the pack. The excessive voltage was handled with a DC-to-DC converter that, after a bit of tweaking, was putting out a solid 12 V.

What we love about the hack is that it’s one anybody can do, and it gives an inkling of what type of engineering goes into even larger projects. And be sure to watch the video to the end for the adorable and giggly results!

Speaking of larger projects, check out the reverse engineering required in this Lead Acid to Li-Ion conversion we covered in 2016.

Continue reading “Toddler EV Gets Big Boy Battery Upgrade”

Scratch-Built Electric Buggy Tears Up The Dunes

It’s a fair bet to say that the future of personal transportation will probably be electric. In support of that, every major car manufacturer either has an electric drivetrain option available now, or they’re working furiously on developing one. And while it’s good that your suburban grocery grabber will someday be powered by the sun, what about the pressing need for EVs that are just plain fun to drive?

To fill the fun gap, at least for now, [James Biggar] built what you can’t buy: an all-electric dune buggy. And lest you think this was a kit build, be assured that the summary video below shows this little sand rail was 100% scratch-built. The chassis is fabricated from bent tubing, and welded up using a clever plywood template to get the angles just right. The buggy has four-wheel independent suspension and a wide, aggressive stance to handle rough terrain. The body panels are sheet aluminum bent on a custom-built brake, which was also used to form the Plexiglas windshield with a little help from a heat gun.

While the bodywork makes the buggy pretty sick looking, the drivetrain is just as impressive. [James] used an ME1616, a liquid-cooled 55-kW beast. A chain drive couples the motor to a differential from a Honda CR-V which has a limited-slip modification installed. The batteries are impressive, too — 32 custom-made lithium-iron-phosphate batteries made from 32650 cells in vacuum-formed ABS plastic shells that nest together compactly. It all adds up to a lot of fun in the dirt; skip to 23:37 in the video to see what this thing can do.

Honestly, the level of craftsmanship here is top-notch, and is all the more impressive in that it’s not fancy — just good, solid methods and lots of hard work. We’d love to have the time and resources to put into something like this — although a drop-in crate motor EV might be a satisfying build too.

Continue reading “Scratch-Built Electric Buggy Tears Up The Dunes”

EV Charging Connectors Come In Many Shapes And Sizes

Electric vehicles are now commonplace on our roads, and charging infrastructure is being built out across the world to serve them. It’s the electric equivalent of the gas station, and soon enough, they’re going to be everywhere.

However, it raises an interesting problem. Gas pumps simply pour a liquid into a hole, and have been largely standardized for quite some time. That’s not quite the case in the world of EV chargers, so let’s dive in and check out the current state of play.

AC, DC, Fast, or Slow?

Since becoming more mainstream over the past decade or so, EV technology has undergone rapid development. With most EVs still somewhat limited in range, automakers have developed ever-faster charging vehicles over the years to improve practicality. This has come through improvements to batteries, controller hardware, and software. Charging tech has evolved to the point where the latest EVs can now add hundreds of miles of range in under 20 minutes.

However, charging EVs at this pace requires huge amounts of power. Thus, automakers and industry groups have worked to develop new charging standards that can deliver high current to top vehicle batteries off as quickly as possible.

As a guide, a typical home outlet in the US can deliver 1.8 kW of power. It would take an excruciating 48 hours or more to charge a modern EV from a home socket like this.

In contrast, modern EV charge ports can carry anywhere from 2 kW up to 350 kW in some cases, and require highly specialized connectors to do so. Various standards have come about over the years as automakers look to pump more electricity into a vehicle at greater speed. Let’s take a look at the most common options out in the wild today. Continue reading “EV Charging Connectors Come In Many Shapes And Sizes”

DIY Arduino Based EV Charger Saves Money, Looks Pro

Electric vehicles (EVs) are something of a hot topic, and most of the hacks we’ve featured regarding them center on conversions from Internal Combustion to Electric. These are all fine, and we hope to see plenty more of them in the future. There’s another aspect that doesn’t get covered as often: How to charge electric vehicles- especially commercially produced EV’s rather than the DIY kind. This is the kind of project that [fotherby] has taken on: A 7.2 kW EV charger for his Kia.

Faced with spending £900 (about $1100 USD) for a commercial unit installed by a qualified electrician, [fotherby] decided to do some research. The project wasn’t outside his scope, and he gave himself a head start by finding a commercial enclosure and cable that was originally just a showroom unit with no innards.

An Arduino Pro Mini provides the brains for the charger, and the source code and all the needed information to build your own like charger is on GitHub. What’s outstanding about the guide though is the deep dive into how these chargers work, and how straightforward they really are without being simplistic.

Dealing with mains power and the installation of such a serious piece of kit means that there are inherent risks for the DIYer, and [fotherby] addresses these admirably by including a ground fault detection circuit. The result is that if there is a ground fault of any kind, it will shut down the entire circuit at speeds and levels that are below the threshold that can harm humans. [fotherby] backs this up by testing the circuit thoroughly and documenting the results, showing that the charger meets commercial standards. Still, this isn’t a first-time project for the EV enthusiast, so we feel compelled to say “Don’t Try This At Home” even though that’s exactly what’s on display.

In the end, several hundred quid were saved, and the DIY charger does the job just as well as the commercial unit. A great hack indeed! And while these aren’t common, we did cover another Open Source EV charger about a year ago that you might like to check out as well.

Continue reading “DIY Arduino Based EV Charger Saves Money, Looks Pro”

The State Of Play In Solid State Batteries

Electric vehicles are slowly but surely snatching market share from their combustion-engined forbearers. However, range and charging speed remain major sticking points for customers, and are a prime selling point for any modern EV. Battery technology is front and center when it comes to improving these numbers.

Solid-state batteries could mark a step-change in performance in these areas, and the race to get them to market is starting to heat up. Let’s take a look at the current state of play.

Continue reading “The State Of Play In Solid State Batteries”