Testing Whether Fast Charging Kills Smartphone Batteries, And Other Myths

Calendar aging of NMC Li-ion cells at 50 ℃ at various SoCs. (Credit: Wiljan Vermeer, IEEE, 2021)
Calendar aging of NMC Li-ion cells at 50 ℃ at various SoCs. (Credit: Wiljan Vermeer, IEEE, 2021)

With batteries being such an integral part of smartphones, it’s little wonder that extending the period between charging and battery replacement has led to many theories and outright myths about what may affect the lifespan of these lithium-ion batteries. To bust some of them, [HTX Studio] over on YouTube has spent the past two years torturing both themselves and a myriad of both iOS and Android phones to tease out some real-life data.

After a few false starts with smaller experiments, they settled on an experimental setup involving 40 phones to investigate two claims: first, whether fast charging is worse than slow charging, and second, whether limiting charging to 80% of a battery’s capacity will increase its lifespan. This latter group effectively uses only 50% of the capacity, by discharging down to 30% before recharging. A single control phone was left alone without forced charge-discharge cycles.

Continue reading “Testing Whether Fast Charging Kills Smartphone Batteries, And Other Myths”

RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties

For the past two-and-half years Canadian consumer testing outfit RTINGS has been running an accelerated aging experiment across a large number of TVs available to a North-American audience. In their most recent update, we not only  find out about the latest casualties, but also the impending end of the experiment after 18,000 hours — as the TVs are currently failing left and right as they accelerate up the ascending ramp of the bathtub curve.

Some of these LEDs are dead, others are just wired in series. (Credit: RTINGS.com)
Some of these LEDs are dead, others are just wired in series.

The dumbest failure type has to be the TVs (such as the Sony X90J) where the failure of a single dead backlight LED causes the whole TV to stop working along with series-wired LED backlights where one dead LED takes out a whole strip or zone. Other failures include degrading lightguides much as with our last update coverage last year, which was when edge-lit TVs were keeling over due to overheating issues.

Detailed updates can be found on the constantly updating log for the experiment, such as on the failed quantum dot diffusor plate in a TCL QLED TV, as the quantum dots have degraded to the point of green being completely missing. Although some OLEDs are still among the ‘living’, they’re showing severe degradation – as pictured above – after what would be the equivalent of ten years of typical usage.

Once the experiment wraps up it will be fascinating to see who the survivors are, and what the chances are of still using that shiny new TV ten years from now.

Continue reading “RTINGS 10-Year Equivalent TV Longevity Update With Many Casualties”

24 Hours Of Le Airplanes

There’s no more famous road endurance race than the 24 Hours of Le Mans, where teams compete to see how far they can drive in a single 24-hour window. The race presents unique challenges not found in other types of racing. While RC airplanes may not have a similar race, [Daniel] a.k.a. [rctestflight] created a similar challenge for himself by attempting to fly an RC airplane non-stop for as long as he could, and a whole host of interesting situations cropped up before and during flight.

In order for an RC plane to fly for an entire day, it essentially needs to be solar powered. A large amount of strategy goes into a design of this sort. For one, the wing shape needs to be efficient in flight but not reduce the amount of area available for solar panels. For another, the start time of the flight needs to be balanced against the position of the sun in the sky. With these variables more or less fixed, [Daniel] began his flight.

It started off well enough, with the plane in an autonomous “return to home” mode which allowed it to continually circle overhead without direct human control. But after taking a break to fly it in FPV mode, [Daniel] noticed that the voltage on his battery was extremely high. It turned out that the solar charge controller wasn’t operating as expected and was shunting a large amount of solar energy directly into the battery. He landed and immediately removed the “spicy pillow” to avoid any sort of nonlinear event. With a new battery in the plane he began the flight again.

Even after all of that, [Daniel] still had some issues stemming from the aerodynamic nature of this plane specifically. There were some issues with wind, and with the flight controller not recognizing the correct “home” position, but all in all it seems like a fun day of flying a plane. If your idea of “fun” is sitting around and occasionally looking up for eight and a half hours. For more of [Daniel]’s long-term autonomous piloting, be sure to take a look at his solar tugboat as well.

Continue reading “24 Hours Of Le Airplanes”

How To Get Into Cars: Endurance Racing Builds

Many an automotive enthusiast finds themselves at a track day eventually. Typically, this involves competing against the clock to better one’s laptimes in short sessions throughout the day. Such events are fun, but it often creates a perishing thirst for a greater level of competition.

Regularity and endurance events are often the next step up for a lot of people. These events involve long runs at race pace that stress a car to (or beyond!) the breaking point. Careful preparation is required if one is to see out the race to the chequered flag. Let’s break down what you’ll need to consider.

Continue reading “How To Get Into Cars: Endurance Racing Builds”

The Longest Ever Flight Was Over 64 Days In A Cessna 172

Often, when we think of long-endurance flights, our first thoughts jump to military operations. Big planes with highly-trained crew will fly for long periods, using air-to-air refuelling to stay aloft for extended periods.

However, many of the longest duration flights have been undertaken as entirely civilian operations. The longest of all happened to be undertaken by that most humble of aircraft, the Cessna 172. From December 1958 to February 1959, Bob Timm and John Cook set out to make history. The duo remained aloft for a full 64 days, 22 hours and 19 minutes, setting a record that stands to this day.

A Test of Endurance

One might expect that such an effort was undertaken to push the envelope or to strike new ground in the world of aerospace engineering. However, the real truth is that Bob Timm was a slot machine mechanic and former bomber pilot who worked at the Hacienda casino in Las Vegas. Proprietor Doc Bailey was always on the hunt for promotional ideas, and Timm pitched his boss that a record attempt in a plane bearing the casino’s branding would be a good way to go. Bailey agreed, and committed $100,000 to the effort. 

Modifications to prepare the aircraft for the stunt took the best part of a year. The pint-sized Cessna was fitted with a 95-gallon belly tank, paired with a electric pump that could transfer fuel to the main wing tanks as needed. Special plumbing was also added that would allow the engine oil and filters to be changed while the engine was still running.

Continue reading “The Longest Ever Flight Was Over 64 Days In A Cessna 172”

Electric RC Plane Flies For Almost 11 Hours

Electric RC aircraft are not known for long flight times, with multirotors usually doing 20-45 minutes, while most fixed wings will struggle to get past two hours. [Matthew Heiskell] blew these numbers out of the water with a 10 hour 45 minute flight with an RC plane on battery power. Condensed video after the break.

Flight stats right before touchdown. Flight time in minutes on the left, and miles travelled second from the top on the right.

The secret? An efficient aircraft, a well tuned autopilot and a massive battery. [Matthew] built a custom 4S 50 Ah li-ion battery pack from LG 21700 cells, with a weight of 2.85 kg (6.3 lbs). The airframe is a Phoenix 2400 motor glider, with a 2.4 m wingspan, powered by a 600 Kv brushless motor turning a 12 x 12 propeller. The 30 A ESC’s low voltage cutoff was disabled to ensure every bit of juice from the battery was available.

To improve efficiency and eliminate the need to maintain manual control for the marathon flight, a GPS and Matek 405 Wing flight controller running ArduPilot was added. ArduPilot is far from plug and play, so [Matthew] would have had to spend a lot of timing tuning and testing parameters for maximum flight efficiency. We are really curious to see if it’s possible to push the flight time even further by improving aerodynamics around the protruding battery, adding a pitot tube sensor to hold the perfect airspeed speed on the lift-drag curve, and possibly making use of thermals with ArduPilot’s new soaring feature.

A few of you are probably thinking, “Solar panels!”, and so did Matthew. He has another set of wings covered in them that he used to do a seven-hour flight. While it should theoretically increase flight time, he found that there were a number of significant disadvantages. Besides the added weight, electrical complexity and weather dependence, the solar cells are difficult to integrate into the wings without reducing aerodynamic efficiency. Taking into account what we’ve already seen of [rcflightest]’s various experiments/struggles with solar planes, we are starting to wonder if it’s really worth the trouble. Continue reading “Electric RC Plane Flies For Almost 11 Hours”

Row Your Bike To China

If you’re a fan of endurance racing motor vehicles, there’s one that puts the 24 Hours of Le Mans, the Dakar Rally, and the Baja 1000 to shame, and the race doesn’t even involve cars. Indeed, the vehicles used for this massive trek from France to China are electric bicycles, powered only by solar panels. This is the epic Sun Trip endurance race, and one of its competitors built a unique tandem bike that is powered both by pedaling, rowing, and the solar panels.

The tandem bike is interesting on its own since the atypical design uses a back-to-back layout which means one person is facing backward, but the storage space is dramatically increased over the normal forward-facing layout. The person in the rear doesn’t pedal, though. [Justin_le] built an upper-body-powered rowing station for that spot so that the person riding back there can rest their legs but still help propel the vehicle. Of course, there’s also a solar panel roof so the two riders can pedal and row in the shade, which includes MPPT and solar tracking which drives a small electric motor on board as well.

This race started in June but is still going on. There’s a live GPS feed so you can keep up with the teams, and if you get really inspired you can go ahead and sign up for the 2019 race as well. This particular bike was also featured on Radio Canada as well if you’d like to learn more about it.

Thanks to [Arthur] for the tip!