A shot of the underside of a "One Fast Cat" cat wheel with an installed ESP8266 and hall effect sensors attached to the base.

Spy On Your Cat To Make Sure It Gets Its Paws In

[Scott Cutler] has a young cat, [Cygnus], that loves to run on a cat wheel and [Scott] had some some important questions about [Cygnus]’s usage of the cat wheel like, how often it’s used, what direction is preferred and how fast does [Cygnus] go. To answer these questions, [Scott] put some telemetry sensors onto the cat wheel and analyzed the results.

An ESP8266 microcontroller and two 3144E hall effect modules were used to sense eight magnets glued onto the outer housing of a “One Fast Cat” cat wheel. [Scott] installed the ESP8266 and hall effect modules onto the base support for the wheels, using 3D printed brackets to secure them.

For the software side, the ESP8266 attaches an interrupt handler whenever a sensor passes by, recording a window of three previous measurements for valid sample determination and, if accepted, uses the time between samples to infer direction and speed. The ESP8266 connects to a pre-configured local WiFi network and has a telnet interface to extract stored log information, in the form of JSON data.

[Scott] has some nice graphs and other data visualizations on [Cygnus]’s usage, including a preference for running at 3 AM, achieving a maximum speed of 14 mph and an average of 4 seconds per run. The source is available on GitHub and the STL files are available embedded in [Scott]’s write-up. We’ve featured cat exercise trackers before with a giant hamster wheel outfitted with a Raspberry Pi and it’s nice to see some options that allow for a retrofit option in addition to a complete DIY solution.

A round clock with a color-coded face, with its name "Pingo" across it, together with a 3D animated mouse

Pingo Is An Analog Clock That Uses Colors Instead Of Hands

The purpose of a clock is to show the time, obviously. But if you’ve followed Hackaday for some time, you’ll know there are about a million different ways of achieving this. [illusionmanager] added yet another method in his Pingo Color Clock, which, as the name suggests, uses color as the main indicator.

The clock’s face is divided into three concentric circular zones. The zone at the center shows the hours, while the outer ring indicates the minutes. Both change their color such that they match the zone in between, which always shows a complete rainbow, at the desired location. In the picture above for example, the magenta inner circle matches the rainbow at the 10 o’clock position, while the yellow outer circle matches it at 10 minutes past the hour, meaning it’s currently 10:10.

A set of concentric circular LED with an ESP8266The rainbow ring is also moving however, and by adjusting its rotation through time you can get some interesting effects. [illusionmanager] programmed it in such a way that the outer ring is always yellow during the day, purple at night, and red at sunrise and sunset. The overall brightness is also adjusted to a day/night schedule.

As complex as the clock’s appearance may be, inside it’s quite a simple design. Nine concentric circular LED strips are driven by an ESP8266, which retrieves the time and sunrise information through its WiFi connection. A piece of translucent white acrylic acts as a diffuser, while a 3D-printed enclosure holds everything together.

Encoding the time using different colors of light has been done before in various different ways, and while we haven’t seen Pingo in real life, we believe it should be somewhat easier to read than most of those examples. It might actually form a nice complement to a recent analog LED ring clock.

Continue reading “Pingo Is An Analog Clock That Uses Colors Instead Of Hands”

Fail Of The Week: Epic 312 Weeks Of Fixing A Broken Project

If a hacker guardian angel exists, then we’re sure he or she was definitely AWOL for six long years from [Aaron Eiche]’s life as he worked on perfecting and making his Christmas Countdown clock. [Aaron] started this binary clock project in 2016, and only managed to make it work as expected in 2022 after a string of failures.

In case you’d like to check out his completed project first, then cut the chase and head over to his Github repository for his final, working version. The hardware is pretty straightforward, and not different from many similar projects that we’ve seen before. A microcontroller drives a set of LED’s to show the time remaining until Christmas Day in binary format. The LEDs show the number of days, hours, minutes and seconds until Christmas and it uses two buttons for adjustments and modes. An RTC section wasn’t included in the first version, but it appeared and disappeared along the six year journey, before finding a spot in the final version.

The value of this project doesn’t lie in the final version, but rather in the lessons other hackers, specially those still in the shallow end of the pool, can learn from [Aaron]’s mistakes. Thankfully, the clock ornament is not very expensive to build, so [Aaron] could persevere in improving it despite his annual facepalm moments.

Continue reading “Fail Of The Week: Epic 312 Weeks Of Fixing A Broken Project”

A wooden box sits on a darker wooden table. The box has a red, glowing number 8 on it.

Ambient Display Tells You If Borealis Is Coming To Town

For those times when you’d rather not get sucked down another internet rabbit hole when you really just wanted the weather, an ambient display can be great. [AlexanderK106] built a simple ambient display to know the probability the Northern Lights would visit his town.

Starting with a NodeMCU featuring the ESP8266, [AlexanderK106] walks us through a beginner-friendly tutorial on how to do everything from configure the Arduino IDE, the basics of using a breadboard. finding a data source and parsing it, and finally sticking everything into an enclosure.

The 7-segment display is taped and set into the back of the 1/4″ pine with enough brightness to shine through the additional layer of veneer on top. The display is set to show one digit and then the next before a three second repeat. A second display would probably make this easier to use day-to-day, but we appreciate him keeping it simple for this tutorial.

Looking for more ambient displays? Checkout the Tempescope or this clock that lets you feel the temperature outside!

ESP8266 Coaster Keeps Your Drink Warm

Looking for the perfect winter desk accessory? [Wq] has created a beautiful coaster made out of PCBs  that can keep your drink warm with an internal heater. (Chinese).

An ESP8266 sits as the main controller, with an additional MQTT control option, where the whole unit is powered over a USB-C connection. On board PCB traces, in the shape of a Hilbert curve, create the heating element used to heat beverages placed on the coaster, where [Wq] reports a measured resistance of the PCB trace network at 1.2 ohms. [Wq] writes that an AON6324 MOSFET replaces the D4184 that was previously being used, but might need some testing to get working properly. There are two capacitive touch sensors which has a TTP223E capacitive touch controller attached to detect input, with a multi-colored FM-3528 RGB LED for user feedback.

We love the artistry that went into building the coaster. For adventurous hackers wanting to build their own, the bill of materials (BOM), source code and board files are all available. We’ve seen everything from coasters and to PCB reflow boards, so it’s nice to see experimentation with a combination of these ideas.

A small brown PCB with various components on it. There is a headphone cable and DC barrel connector cable coming out of it.

Put Your Serial Port On The Web

Today, everything from your computer to your dryer has wireless communications built in, but devices weren’t always so unencumbered by wires. What to do when you have a legacy serial device, but no serial port on the computer you want to connect? [vahidyou] designed a wireless serial dongle to solve this conundrum.

Faced with a CNC that took instructions over serial port, and not wanting to deal with the cabling involved in a serial to USB adapter, [vahidyou] turned to an ESP8266 to let his computer and device talk wirelessly. The hand-made PCB connects via a 3.5 mm headphone jack to DB9 adapter which he describes in another article. While [vahidyou] did write a small Windows program for managing the device, it is probably easier to simply access it in a web browser from any device you have handy.

Want to see another wireless serial port application? This Palm Portable Keyboard Bluetooth dongle will let you type in comfort on the go, or you can use a PiModem to get your retrocomputer online!

Fritzing diagram of connections between the Wemos D1 board, the TP4056 board, the pushbutton and the LiIon battery

Battery-Powered ESP8266 Sensor? Never Been Simpler

Say, you’re starting your electronics journey with a few projects in mind. You have an ESP8266 board like the Wemos D1, a Li-Ion battery, you want to build a small battery-powered sensor that wakes up every few minutes to do something, and you don’t want to delve into hardware too much for now. Well then, does [Mads Chr. Olesen] have a tutorial for you! Here, you’ll learn the quick and easy way to get your sensor up and running, learn a few tricks for doing sleep Arduino environment, and even calculate how long your specific battery could last. Continue reading “Battery-Powered ESP8266 Sensor? Never Been Simpler”