ESP8266 And Sensors Make For A Brainy NERF Ball

For his final project in UCLA’s Physics 4AL program, [Timothy Kanarsky] used a NodeMCU to smarten up a carefully dissected NERF football. With the addition to dual MPU6050 digital accelerometers and some math, the ball can calculate things like the distance traveled and angular velocity. With a 9 V alkaline battery and a voltage regulator board along for the ride it seems like a lot of weight to toss around; but of course nobody on the Hackaday payroll has thrown a ball in quite some time, so we’re probably not the best judge of such things.

Even if you’re not particularly interested in refining your throw, there’s a lot of fascinating science going on in this project; complete with fancy-looking equations to make you remember just how poorly you did back in math class.

As [Timothy] explains in the write-up, the math used to find velocity and distance traveled with just two accelerometers is not unlike the sort of dead-reckoning used in intercontinental ballistic missiles (ICBMs). Since we’ve already seen model rockets with their own silos, seems all the pieces are falling into place.

The NodeMCU polls the accelerometers every 5 milliseconds, and displays the data on web page complete with scrolling graphs of acceleration and angular velocity. When the button on the rear of the ball is pressed, the data is instead saved to basic Comma Separated Values (CSV) file that’s served up to clients with a minimal FTP server. We might not know much about sportsball, but we definitely like the idea of a file server we can throw at people.

Interestingly, this isn’t the first time we’ve seen an instrumented football. Back in 2011 it took some pretty elaborate hardware to pull this sort of thing off, and it’s fascinating to see how far the state-of-the-art has progressed.

The Internet Of Football

While football in the United States means something totally different from what it means in the rest of the world, fans everywhere take it pretty seriously. This Sunday is the peak of U.S. football frenzy, the Super Bowl, and it is surprisingly high-tech. The NFL has invested in a lot of technology and today’s football stats are nothing like those of the last century thanks to some very modern devices.

It is kind of interesting since, at the core, the sport doesn’t really need a lot of high tech. A pigskin ball, some handkerchiefs, and a field marked off with some lime and a yardstick will suffice. However, we’ve seen a long arc of technology in scoreboards, cameras — like instant replay — and in the evolution of protective gear. But the last few years have seen the rise of data collection. It’s being driven by RFID tags in the player’s shoulder pads.

These aren’t the RFID chips in your credit card. These are long-range devices and in the right stadium, a computer can track not only the player’s position, but also his speed, acceleration, and a host of other statistics.

Continue reading “The Internet Of Football”

NFL To Experiment With Chipped Balls

NFL preseason starts in just a few weeks. This year, it will come with a bit of a technological upgrade. The league plans to experiment with custom microchip-equipped footballs. Unfortunately, this move has nothing to do with policing under-inflation — the idea is to verify through hard data that a narrower set of goal posts would mean fewer successful kicking plays.

Why? Kicking plays across the league have been more accurate than ever in the last couple of seasons, and the NFL would like things to be a bit more competitive. Just last year, extra point kicks were moved back from the 20 to the 33-yard line. Kickers already use brand-new balls that are harder and more slippery than the field balls, so narrowing the goal from the standard 18’6″ width is the natural next step. A corresponding pair of sensors in the uprights will reveal exactly how close the ball is when it passes between them.

The chips will only be in K-balls, and only in those kicked during the 2016 preseason. If all goes well, the league may continue their use in Thursday night games this season. We couldn’t find any detail on these custom-made chips, but assume that it’s some kind of transmitter/receiver pair. Let the speculation begin.

Main image: Field goal attempt during the Fog Bowl via Sports Illustrated

[via Gizmodo]

SuperBowlLamp

Super Bowl Football Lamp Keeps You Informed

[David] loves to watch football. After his preferred team lost the playoffs, he wanted another reason to watch the big game last Sunday. He ended up building himself a football-shaped lamp that changes color based on who scored last.

[David] started with a Spark Core and a Spark Button. The Spark is the primary microcontroller and includes WiFi. The Spark Button is essentially a shield for the Spark that includes an accelerometer, some LEDs, and a few push buttons. The other part of this build was the housing. [David] used a toy football he got for free as swag from a parade.

As for the code, [David] started by first learning how to control the LEDs on the Spark Button. Then he wrote his own touchdown function to illuminate the football a specific color. Since the Spark uses the REST API, [David] is able to trigger this function by simply visiting the URL of his Spark. This makes it very simple to trigger the event.

The final part of this build was made easy thanks to IfThisThenThat (IFTTT). This is a web service that allows you to monitor and interact with various online web services. It can monitor one service, and then interact with another based on events that happen in the first service. In this case, [David] is using a “channel” added to IFTTT by ESPN. This channel can trigger when certain events happen for whatever team you specify. For this project [David] is monitoring touchdowns.

After combining all of these various services, [David] had a working light that would change colors based on which team scored. He did notice that IFTTT has anywhere between a 1 and 15 minute delay, and he hopes to improve upon this design by hooking directly to an API and skipping the extra service altogether.

Tracking Footballs With Magnetic Fields

Official NFL footballs are crafted by hand by a company in Chicago called Wilson Sporting Goods. The footballs that are made there typically range from 11 to 11.5 inches in length and weigh anywhere between 14 and 15 ounces on average. Originally, animal bladders lined the outside, occasionally from the inside of a pig, giving the traditional American football the long-standing nickname of a “pigskin.” Now a days, they consist of cowhide leather or vulcanized rubber with laces that are stitched to the top adding mass. This causes the oblong spheres to be naturally lopsided. This is fixed by inserting extra weight to the opposite side of the football balancing it out. Knowing this, a clever hacker will realize that the balancing spot is a perfect place to subtly add a motion tracking transmitter like this one. Doing so makes it possible to the track not only the position of the ball on the field, but its precise location in 3D space!

Since each football is unique, variations between one ball to another exist. This means that embedding a circuit into a football only modifies the equipment slightly, which is a good thing because sports fanatics tend to be very opinionated about whether or not technology should influence the game. So long as the transmitter and loop antenna added to the air bladder doesn’t pass that threshold of about an ounce (or so) difference in weight, then the football itself really isn’t affected much.

Continue reading “Tracking Footballs With Magnetic Fields”

Fifa Looks At Electronic Augmentation

The [Fédération Internationale de Football Association] is joining the growing list of professional sports that is adopting technological means in an attempt to help the human referees. After a botched call in 2010 the organization called for a system that would work day or night, with 100% accuracy and the ability to report to the Refs in less than 1 second. The applicants have been weeded out and it comes down to two systems, both of which use a piece of personal hardware we’re quite familiar with. [Fe80], who sent in the tip, recognized the TI Chronos eZ430 watch in the image above.

The two systems both use the watch as an interface, but work very differently. The first, called GoalRef, uses a sensor suspended inside the ball. This detects a magnetic field made up by the goal posts. We’d guess it’s an inductance sensor that is triggered when it passes a coil in the goal posts (we didn’t find much in the way of technical info so please do your own speculation in the comments). The second system is very familiar. It’s the Hawkeye camera system used by the APT (Tennis) in all the major tournaments.

Data Logging Football

[Ben Kokes] threw together a hardware package to capture data from a football. In the center of a Nerf football he made room for an accelerometer, gyroscope, and an electronic compass.  All three can capture 3-axis data and, along with the LEDs ringing the circumference, they’ve controlled by an XMEGA192 microcontroller.

This makes us think back to a time when baseballs with a built-in speed sensor first hit the market… does this hack have mass marketing potential? Perhaps, but only if the $225 sensor price tag were greatly reduced. When we first started reading the description we hoped that [Ben] had coded an interpreter that would render 3D playback video from the data. He hasn’t done that, but from the data graphs he did assemble we don’t think that functionality is out of the question. We’ll keep our fingers crossed.