Two Vintage Calculators In One

The FPGA revolution that occurred within the past few decades was a boon to many people interested in “antique” electronics. The devices “wire together” logic elements as needed rather than emulating chips completely in a software layer, which makes them uniquely suited for replicating chips that are rare, no longer in production, damaged, or otherwise lost. They also make it easy to experiment with hardware, like this project which combines two antique calculators into one single unit.

The two calculators used in this combination device are the TI Datamath and the Sinclair Scientific, both released in the early 1970s, the former of which has been extensively documented and reverse engineered on at least one occasion. The reproduction from [zpekic] has a toggle that allows the user to switch between the two “modes”. This showcases the power of microprogramming and microcode, and of the FPGA platform itself. Although both modes are functional, there are still a few bugs resulting from how different the two pieces of hardware were, which is really more of an interesting facet of this project than anything.

The build is a great showcase of FPGA technology, not to mention a great read-through for understanding these two calculators and their fundamental differences in data entry and manipulation, clock cycles, memory, and everything in between. It’s worth checking out, even if you don’t plan on using a decades-old calculator in your day-to-day life.

Gigantic FPGA In A Game Boy Form Factor, 2019 Supercon Badge Is A Hardware Siren Song

Look upon this conference badge and kiss your free time goodbye. The 2019 Hackaday Superconference badge is an ECP5 FPGA running a RISC-V core in a Game Boy form factor complete with cartridge slot that is more open than anything we’ve ever seen before: multiple open-source CPU designs were embedded in an open system, developed using the cutting-edge in open-source FPGA tools, and running (naturally) open-source software on top. It’s a 3,000-in-one activity kit for hardware people, software people, and everyone in between.

The brainchild of Jeroen Domburg (aka Sprite_TM), this design has been in the works since the beginning of this year. For more than 500 people headed to Supercon next week, this is a source of both geeky entertainment and learning for three action-packed days and well beyond. Let’s take a look at what’s on the badge, what you need to know to hack it, and how the design serves as a powerful development tool long after the badge hacking ceremonies have wrapped up.

Continue reading “Gigantic FPGA In A Game Boy Form Factor, 2019 Supercon Badge Is A Hardware Siren Song”

The $5 FPGA

You ever wonder exactly what’s inside that cheap stuff you get from China? Sometimes it is cheap parts you’ve never heard about. Case in point: if you are willing to import, you can score an FPGA board for about $5. The downside? You’ve probably never heard of the GOWIN Semi GW1N  — one of the Little Bee FPGAs — that’s onboard.

There is some English documentation which leaves room for interpretation and you’ll have to use their IDE. Then again, it might be a fun puzzle to get one of these working. Looks like Seeed has them available for $4.90.

According to the Wiki, the onboard chip is GW1N-LV1QN48C6/I5, equipped with 1152 LUT4 logic resources, 1 PLL and a total of 72Kbit SRAM. The development board brings out all I/O interfaces. There’s also 64 Mbits of PSRAM. The board also has an RGB interface for a display, a 24 MHz clock, and the USB programming/debugging interface.

We didn’t try it, but the development tool looks to be available for Windows or Linux. Browsing through the wiki gives the impression it is usable, although probably simple — which could be an advantage compared to some other tool suites.

Worth a try? The Lattice chips are not that expensive and are well supported by open source tools. Then again, people want to try the very cheap (under a dime) CPU that is in a lot of products. So why not FPGAs, too?

SPARC CPU In A Cheap FPGA

There was a time when SPARC CPUs were the sole realm of pricey Sun workstations, but now you can put one on an FPGA with just a little trouble. The problem is you need a fairly big FPGA which isn’t always cheap unless someone goes out of business and you get lucky. [Ttsiodras] picked up a Pano logic thin client. Pano went under and their entire inventory is out on the surplus market at cheap prices. With a little FPGA magic, you can turn a few bucks into a SPARC-based computer.

The insides of the workstation have a Spartan 6 FPGA inside and you’ll need to solder in some JTAG wires, but that shouldn’t put anybody here off.  Of course, the Spartan 6 isn’t the newest tech so you’ll have to get an old version of the Xilinx tools but that’s not hard either. However, there is a strange irony you’ll need to be aware of if you use Linux.

Continue reading “SPARC CPU In A Cheap FPGA”

FBus: An Extensible And Easily Configurable FPGA Based DAQ

[flow] is a little disillusioned with commercial Data Acquisition Systems (DAQs) and channeled his frustration into his own, very cool, FPGA based solution.

The project takes form as a back plane into which various cards can be slotted. The the interface is just a PCI-e connector. If you need analog input, simply insert the card for it. Ethernet output? Same process. Modularity and expandability are the themes here.

[flow] already has projects in mind for his new DAQ. He’s using it to build an inverted pendulum. However, his planned cards really show the possibilities, anything from a logic analyzer card to an HDMI Output card allow for a wide array of configurations. There is also a small suite of tools which makes this process relatively easy to manage.

We can definitely see this evolving into a useful tool on our bench for prototyping.

Symbiflow Open Source FPGA Toolchain

Anyone who’s ever had the pleasure of programming FPGAs knows that it’s a land of proprietary tools that almost require marriage level commitment to a specific platform to be effective. Symbiflow hopes to solve this by becoming the GCC of FPGAs.

Rather than a tool built around a specific chip or architecture, Symbiflow will provide a more universal interface.  Users can program in Verilog; architecture definitions define how the code will be compiled for the right chip. They are currently targeting the popular Xilinx 7-series, the very affordable iCE40 series from lattice, and the ECP5 FPGAs also from Lattice.

If you’re headed to Hackaday Supercon this year, [Timothy Ansell] will be giving a talk on how Symbiflow is making this process much more approachable and much less proprietary.  Overall we’re very excited about a common interface, especially as the price of FPGAs keep dropping into micro controller territory while also increasing in capability.

(Speaking of Supercon, and maybe this is a spoiler, the badge would not have been possible without Symbiflow, Project Trellis, Yosys, and NextPNR.)

Chisel Away At FPGA Development

Most of the time if you were to want to develop for an FPGA, you might turn to Verilog or VHDL. Both of these are quite capable, but they are also firmly rooted in languages that are old-fashioned by today’s standards. There have been quite a few attempts to treat those languages as an output to some other tool — either a higher-level language or a graphical tool. One recent effort is a toolchain that starts with Chisel.

The idea behind Chisel is to provide Scala with Verilog-like constructs. If you want, you can use it as a “super Verilog” taking advantage of classes and other features. However, Chisel also allows you to create generators that produce different output Verilog depending on how you call them. True, you can do some of this with Verilog modules, but it is much easier with Chisel. Chisel uses Firrtl to convert what you ask it to do into Verilog for different FPGA and ASIC targets.

Continue reading “Chisel Away At FPGA Development”