A Non-Sony Playstation Motherboard Replacement

As hardware ages, it becomes harder and harder to keep it in service. Whether that’s because of physical aging or lack of support from the company who built it in the first place, time is not generally good for electronics, especially when it comes to our beloved retro gaming systems. The first Playstation, for example, is starting to see some of the deleterious effects of having originally been built in the 90s, and [LorentioB] has a new, third-party motherboard to bring to the table to keep these systems online as well as adding some features in that Sony removed.

The motherboard is known as the nsOne, meaning Not Sony’s One since this is the first motherboard built by a single person outside of Sony. It’s not based on any FPGAs or emulators and is completely compatible with all of the original hardware, chips, and other circuitry of the original Playstation. Based on the PU-23 series, it even revives the removed parallel port, which Sony removed after the first versions of the hardware because of region locking concerns and other pro-consumer issues. Every chip footprint and connector was reverse engineered manually, using optical sanding, scanning, and net-by-net tracing.

For such a complex piece of hardware this is quite the feat, and for anyone who wants to restore old hardware or add the parallel port back on to their system this could be a game changer. [LorentioB] is not quite finished yet but hopes to have a finished version shortly. As far as fully opening up the system goes, there are some software hacks to look at that allow more games to run on the system and some hardware hacks that open the system up as well.

Unlocking The Potential Of A No-Name Handheld Game

The rise of inexpensive yet relatively powerful electronics has enabled a huge array of computing options that would have been unheard of even two decades ago. A handheld gaming PC with hours of battery life, for example, would have been impossible or extremely expensive until recently. But this revolution has also enabled a swath of inexpensive but low-quality knockoff consoles, often running unlicensed games, that might not even reach the low bar of quality set by their sellers. [Jorisclayton] was able to modify one of these to live up to its original promises.

This Ultimate Brick Game, as it is called, originally didn’t even boast the number of games, unlicensed or otherwise, that it claimed to. [Jorisclayton] removed almost all of the internals from this small handheld to help it live up to this original claim. It boasts a Raspberry Pi Zero 2W now as well as a TFT screen and has a number of other improvements including Bluetooth support for external controllers and upgraded audio. A second console was used for donor parts, and some case mods were made as well to accommodate a few extra buttons missing on the original console.

Right now the project is in a prototype phase, as [Jorisclayton] is hoping to use the donor case to build a more refined version of this handheld console in the future. Until then, this first edition upgrade of the original console can run RetroPie, which means it can run most games up through the Nintendo 64 era. RetroPie enables a ton of emulation for old video games including arcade games of the past. This small arcade cabinet uses that software to bring back a bit of nostalgia for the arcade era.

Reverse Engineering LEGO Island

While LEGO themed video games have become something of a staple, in 1997 they were something of an odity. LEGO Island became the first LEGO video game released outside of Japan in 1997 and become something of a hit with over one million copies sold. The game was beloved among fans and set the stage for more LEGO video games to come. In an effort of love, [MattKC] put together a team to reverse engineer the game.

The team set out with the intent to create a near perfect recreation of the codebase, relying on custom made tools to run byte checks on the rewrite compilation and the original binary. While the project is functionally complete, [MattKC] believes it is impossible to get a byte accurate codebase. This is because of what the team called “compiler entropy.” Strange behaviors exists inside of Microsoft’s Visual C++ compiler of the era, and small changes in the code have seemingly random effects to unrelated parts of the binary. To mitigate this issue would likely require either partially reverse engineering Visual C++ or brute forcing the code, both of which would take a large amount of effort and time for no real benefit.

Continue reading “Reverse Engineering LEGO Island”

You Can Now Play DOOM In Microsoft Word, But You Probably Shouldn’t

DOOM used to primarily run on x86 PCs. It later got ported to a bunch of consoles with middling success, and then everything under the sun, from random embedded systems to PDFs. Now, thanks to [Wojciech Graj], you can even play it in Microsoft Word.

To run DOOM inside Microsoft Word, you must enable VBA macros, and ignore security warnings, to boot. You’ll need a modern version of Word, and it will only work on Windows on an x64 CPU. As you might imagine, too, the *.DOCM file is not exactly lightweight. It comes in at 6.6 MB, no surprise given it contains an entire FPS. It carries inside it a library called doomgeneric_docm.dll and the whole doom1.wad data file. Once the file is opened, a macro then extracts all the game data and executes it.

If you think that Microsoft Word doesn’t really have a way of displaying live game graphics, you’d be correct. Instead, that DLL is creating a bitmap image of the game state for every frame, which is then displayed inside Word itself. It uses the GetAsyncKeyState function to grab inputs from the arrow keys, number keys, and CTRL and space so the player can move around. It certainly sounds convoluted, but it actually runs pretty smoothly given all the fuss.

While this obviously works, you shouldn’t get in the habit of executing random code in your word processor. It’s just not proper, you see, like elbows on the dinner table! And, you know. It’s insecure. So don’t do that.

Continue reading “You Can Now Play DOOM In Microsoft Word, But You Probably Shouldn’t”

Pixel mashup with Wasm-4 logo and retro graphics

WASM-4: Retro Game Dev Right In Your Browser

Have you ever dreamt of developing games that run on practically anything, from a modern browser to a microcontroller? Enter WASM-4, a minimalist fantasy console where constraints spark creativity. Unlike intimidating behemoths like Unity, WASM-4’s stripped-back specs challenge you to craft games within its 160×160 pixel display, four color palette, and 64 KB memory. Yes, you’ll curse at times, but as every tinkerer knows, limitations are the ultimate muse.

Born from the WebAssembly ecosystem, this console accepts “cartridges” in .wasm format. Any language that compiles to WebAssembly—be it Rust, Go, or AssemblyScript—can build games for it. The console’s emphasis on portability, with plans for microcontroller support, positions it as a playground for minimalist game developers. Multiplayer support? Check. Retro vibes? Double-check.

Entries from a 2022’s WASM-4 Game Jam showcase this quirky console’s charm. From pixel-perfect platformers to byte-sized RPGs, the creativity is staggering. One standout, “WasmAsteroids,” demonstrated real-time online multiplayer within these confines—proof that you don’t need sprawling engines to achieve cutting-edge design. This isn’t just about coding—it’s about coding smart. WASM-4 forces you to think like a retro engineer while indulging in modern convenience.

WASM-4 is a playground for anyone craving pure, unadulterated experimentation. Whether you’re a seasoned programmer or curious hobbyist, this console has the tools to spark something great.

A Handheld Gaming PC With Steam Deck Vibes

Since its inception, the Steam Deck has been a bit of a game changer in the PC gaming world. The goal of the handheld console was to make PC gaming as easy and straightforward as a walled-garden proprietary console like a Switch or Playstation but still allow for the more open gaming experience of a PC. At its core, though, it’s essentially a standard PC with the parts reorganized into handheld form, and there’s no reason any other small-form-factor PC can’t be made into a similar system. [CNCDan] has the skills and tools needed to do this and shows us how it’s done.

The build is based around a NUC, a small form factor computer that typically uses the same low-power mobile processors and graphics cards found in laptops but without the built-in battery or screen. This one has an AMD Ryzen 7 processor with Radeon graphics, making it reasonably high-performing for its size. After measuring out the dimensions of the small computer and preparing for other components like the battery, joysticks, buttons, and even a trackpad, it was time to create the case. Instead of turning to a 3D printer, this one is instead milled on a CNC machine. Something tells us that [CNCDan] prefers subtractive manufacturing in general.

With all the parts assembled in the case, the build turns into a faithful Steam Deck replica with a few bonuses, like an exposed Ethernet port and the knowledge that everything can easily be fixed since it was built from the ground up in the first place. The other great thing about builds like these is they don’t need an obscure NUC for the hardware; you can always grab your old Framework mainboard for handheld gaming instead. Reminded us of the NucDeck.

Continue reading “A Handheld Gaming PC With Steam Deck Vibes”

Are CRT TVs Important For Retro Gaming?

We always thought the older console games looked way better back in the day on old CRTs than now on a modern digital display. [Stephen Walters] thinks so too, and goes into extensive detail in a lengthy YouTube video about the pros and cons of CRT vs digital, which was totally worth an hour of our time. But are CRTs necessary for retro gaming?

The story starts with [Stephen] trying to score a decent CRT from the usual avenue and failing to find anything worth looking at. The first taste of a CRT display came for free. Left looking lonely at the roadside, [Stephen] spotted it whilst driving home. This was a tiny 13″ Sanyo DS13320, which, when tested, looked disappointing, with a blurry image and missing edges. Later, they acquired a few more displays: a Pansonic PV-C2060, an Emerson EWF2004A and a splendid-looking Sony KV24FS120. Some were inadequate in various ways, lacking stereo sound and component input options.

A poor analog cable coupled with rendering inaccuracy gives a nice filtering effect

A large video section discusses the reasons for the early TV standards. US displays (and many others using NTSC) were designed for 525 scan lines, of which 480 were generally visible. These displays were interlaced, drawing alternating fields of odd and even line numbers, and early TV programs and NTSC DVDs were formatted in this fashion. Early gaming consoles such as the NES and SNES, however, were intended for 240p (‘p’ for progressive) content, which means they do not interlace and send out a blank line every other scan line.  [Stephen] goes into extensive detail about how 240p content was never intended to be viewed on a modern, sharp display but was intended to be filtered by the analogue nature of the CRT, or at least its less-than-ideal connectivity. Specific titles even used dithering to create the illusion of smooth gradients, which honestly look terrible on a pixel-sharp digital display. We know the differences in signal bandwidth and distortion of the various analog connection standards affect the visuals. Though RGB and component video may be the top two standards for quality, games were likely intended to be viewed via the cheaper and more common composite cable route.

Continue reading “Are CRT TVs Important For Retro Gaming?”