Retrotechtacular: Powerline Sagging And Stringing In The 1950s

While high-voltage transmission lines are probably the most visible components of the electrical grid, they’re certainly among the least appreciated. They go largely unnoticed by the general public — quick, name the power line closest to you right now — at least until a new one is proposed, causing the NIMBYs and BANANAs to come out in force. To add insult to injury, those who do notice the megastructures that make modern life possible rarely take a moment to appreciate the engineering that goes into stringing up hundreds of miles of cable and making sure it stays up.

Not so the Bonneville Power Administration, the New Deal-era federal agency formed to exploit the hydroelectric abundance of the Pacific Northwest of the United States, which produced this 1950 gem detailing the stringing and sagging of power lines. Unsurprisingly, the many projects needed to wire together the often remote dams to the widely distributed population centers in an area that was only just starting to see growth began in the BPA’s offices, where teams of engineers hunched over desks worked out the best routes. Paper, pencil, and slide rules were the tools of the trade, along with an interesting gadget called a conductor sag template, a hardware implementation of the catenary equation that allowed the “sagger” to determine the height of each tower. The conductors, either steel-cored aluminum or pure copper, were also meticulously selected based on tensile strength, expected wind and ice loading, and the electrical load the line was expected to carry.

Once the engineers had their say, the hard work of physically stringing the wires began out in the field. One suspects that the work today is much the same as it was almost eighty years ago, save for much more stringent health and safety regulations. The prowess needed to transfer the wires from lifting sheaves to the insulators is something to behold, and the courage required to work from ladders hanging from wires at certain death heights is something to behold. But to our mind, the real heroes were the logistics fellows, who determined how much wire was needed for each span and exactly where to stage the reels. It’s worth sparing a moment’s thought for the daring photographer who captured all this action, likely with little more than a leather belt and hemp rope for safety.

Continue reading “Retrotechtacular: Powerline Sagging And Stringing In The 1950s”

Hackaday Links Column Banner

Hackaday Links: August 11, 2024

“Please say it wasn’t a regex, please say it wasn’t a regex; aww, crap, it was a regex!” That seems to be the conclusion now that Crowdstrike has released a full root-cause analysis of its now-infamous Windows outage that took down 8 million machines with knock-on effects that reverberated through everything from healthcare to airlines. We’ve got to be honest and say that the twelve-page RCA was a little hard to get through, stuffed as it was with enough obfuscatory jargon to turn off even jargon lovers such as us. The gist, though, is that there was a “lack of a specific test for non-wildcard matching criteria,” which pretty much means someone screwed up a regular expression. Outside observers in the developer community have latched onto something more dire, though, as it appears the change that brought down so many machines was never tested on a single machine. That’s a little — OK, a lot — hard to believe, but it seems to be what Crowdstrike is saying. So go ahead and blame the regex, but it sure seems like there were deeper, darker forces at work here.

Continue reading “Hackaday Links: August 11, 2024”

Hackaday Links Column Banner

Hackaday Links: May 19, 2024

If there was one question we heard most often this week, it was “Did you see it?” With “it” referring to the stunning display of aurora borealis — and australis, we assume — on and off for several days. The major outburst here in North America was actually late last week, with aurora extending as far south as Puerto Rico on the night of the tenth. We here in North Idaho were well-situated for prime viewing, but alas, light pollution made things a bit tame without a short drive from the city lights. Totally worth it:

Hat tip to Tom Maloney for the pics. That last one is very reminiscent of what we saw back in 1989 with the geomagnetic storm that knocked Québec’s grid offline, except then the colors were shifted much more toward the red end of the spectrum back then.

Continue reading “Hackaday Links: May 19, 2024”

Vehicle-to-Grid Made Easy

As electric cars continue to see increased adoption, one associated technology that was touted long ago that still hasn’t seen widespread adoption is vehicle-to-grid or vehicle-to-home. Since most cars are parked most of the time, this would allow the cars to perform load-levelling for the grid or even act as emergency generators on an individual basis when needed. While this hasn’t panned out for a variety of reasons, it is still possible to use an EV battery for use off-grid or as part of a grid tie solar system, and now you can do it without needing to disassemble the battery packs at all.

Normally when attempting to use a scrapped EV battery for another use, the cells would be removed from the OEM pack and reorganized to a specific voltage. This build, however, eliminates the need to modify the packs at all. A LilyGO ESP32 is used to convert the CAN bus messages from the battery pack to the Modbus communications protocol used by the inverters, in this case a Fronius Gen24, so the inverter and battery can coordinate energy delivery from one to the other automatically. With the hard part out of the way, the only other requirements are to connect a high voltage DC cable from the battery pack to the inverter.

[Dala], the creator of this project, has taken other steps to ensure safety as well that we’d recommend anyone attempting to recreate this build pays close attention to, as these battery packs contain an extremely large amount of energy. The system itself supports battery packs from Nissan Leafs as well as the Tesla Model 3, which can usually be found for comparably low prices. Building battery energy storage systems to make up for the lack of commercially-available vehicle-to-home systems isn’t the only use for an old EV battery, though. For example, it’s possible to use Leaf batteries to triple the range of other EVs like [Muxsan] did with this Nissan van.

Continue reading “Vehicle-to-Grid Made Easy”

New Renewable Energy Projects Are Overwhelming US Grids

It’s been clear for a long time that the world has to move away from fossil energy sources. Decades ago, this seemed impractical, when renewable energy was hugely expensive, and we were yet to see much impact on the ground from climate change. Meanwhile, prices for solar and wind installations have come down immensely, which helps a lot.

However, there’s a new problem. Power grids across the US simply can’t keep up with the rapid pace of new renewable installations. It’s a frustrating issue, but not an insurmountable one.

Continue reading “New Renewable Energy Projects Are Overwhelming US Grids”

A Homemade Tube Amplifier Featuring Homemade Tubes

With the wealth of cheap and highly integrated audio amplifier modules on the market today, it takes a special dedication to roll your own from parts. Especially when those parts include vacuum tubes, and doubly so when you make the vacuum tubes from scratch too.

Now, we get it — some readers are going to find it hard to invest an hour in watching [jdflyback] make a pair of triodes to build his amplifier. But really, you’ve got to check this out. Making vacuum tubes with all the proper equipment — glassblower’s lathe, various kinds of oxy-fuel torches, all the right hand tools — is hard enough. But when your lathe is a cordless drill, and you’re using a spot welder that looks like it’s cobbled together from junk, your tube-making game gets a lot harder. Given all that, you’d expect the tubes to look a lot rougher than they are, but even with plain tungsten wire heaters and grids made from thick copper wire, they actually work pretty well. Sure, the heaters glow as bright as light bulbs, but that’s all part of the charm.

Speaking of charm, we just love the amp these tubes went into. Built in 1920s breadboard-style, the features some beautiful vintage mica capacitors and wirewound resistors, plus a variable resistor the likes of which we’ve never seen. The one nod to modernity is the clever use of doorbell transformers, one for a choke and one for the speaker transformer. They don’t sound great, but there’s no doubt they work.

We may have seen other homemade vacuum tubes before — we even recently featured a DIY X-ray tube — but there’s something about [jdflyback]’s tubes that really gets us going.

Continue reading “A Homemade Tube Amplifier Featuring Homemade Tubes”

A Look Inside An Old-School Synchroscope

There’s nothing quite like old-school electrical gear, especially the stuff associated with power distribution. There’s something about the chunky, heavy construction, the thick bakelite cases, and the dials you can read from across the room. Double points for something that started life behind the Iron Curtain, as this delightful synchroscope appears to have.

So what exactly is a synchroscope, you ask? As [DiodeGoneWild] explains (in the best accent a human being has ever had), synchroscopes are used to indicate when two AC power sources are in phase with each other. This is important in power generation and distribution, where it just wouldn’t be a good idea to just connect a freshly started generator to a stable power grid. This synchroscope has a wonderfully robust mechanism inside, with four drive coils located 90° apart on a circular stator. Inside that is a moving coil attached to the meter’s needle, which makes this an induction motor that stops turning when the two input currents are in phase with each other.

The meter is chock full of engineering goodies, like the magnetic brake that damps the needle, and the neat inductive coupling method used to provide current to the moving coil. [DiodeGoneWild] does a great job explaining how the meter works, and does a few basic tests that show us the 60-odd years since this thing was made haven’t caused any major damage. We’re eager to see it put to the full test soon.

This is just the latest in a series of cool teardowns by [DiodeGoneWild]. He recently treated us to a glimpse inside an old-ish wattmeter, and took a look at friggin’ laser-powered headlights, too.

Continue reading “A Look Inside An Old-School Synchroscope”