Internet Connected E-Paper Message Board

Are you still writing notes on paper and sticking them to the fridge like it’s the ’80s? Well, if you are, and you read this site, you’d probably like to upgrade to something a bit more 21st century. And, thanks to robot maker [James Bruton], you can leave your old, last century, message taking behind as he has a tutorial up showing you how to build an internet connected e-paper message display board. And, if you have a Raspberry Pi, an e-paper display and adapters just lying around doing nothing, then this project will cost you less than the buck that paper and a magnet will cost you.

Sarcasm aside, this is a pretty nice project. As mentioned, the base of this is a Raspberry Pi – [James] uses a Pi 4, but you could get away with an older, lower powered model as well. This powers the cheap(-ish) e-paper display he found online, which comes with the necessary adapters for the Pi, as well as a python library to write to the display. [James] uses a Google Sheet as the cloud storage for the message board, and there is some python code to access the cells in the Sheet and print them on the display if anything has changed. A cron job runs the script every 5 minutes to catch changes in the messages.

As with most of the projects that [James] does, he gives a good overview in the video and goes over the process of finding the hardware and writing and updating the script. He’s put the script and details as well as the CAD file for the frame he created for the project up on GitHub. [James] has been featured several times on the site before, check out some of his projects.

Continue reading “Internet Connected E-Paper Message Board”

Heater Joins The Internet Of Things With ESP32 Board

The wood-burning heater [g3gg0] has at home works perfectly, except for one flaw: the pellet reservoir needs to be manually refilled every few days. Humans being notoriously unreliable creatures, this critical task is sometimes overlooked, which naturally leads to literally chilling results.

With automatic fill systems expensive and difficult to install, [g3gg0] wanted to find some kind of way for the heater to notify its caretakers about any potential fault conditions. Not just the fact that it was out of fuel (though that would naturally be the most common alert), but any other issue which would potentially keep the heater from doing it’s job. In short, the heater was going to get a one-way ticket to the Internet of Things.

As it turns out, this task was not quite as difficult as you might expect. The Windhager heater already had upgrade bays where the user could insert additional modules and sensors, as well as a rudimentary data bus over RS-485. All [g3gg0] had to do was tap into this bus, decode what the packets contained, and use the information to generate alerts over the network. The ESP32 was more than up to the task, it just needed a custom PCB and 3D printed enclosure that would allow it to slot into the heater like an official expansion module.

When an interesting message flashes across the bus, the ESP32 captures it and relays the appropriate message to an MQTT broker. From there, the automation possibilities are nearly endless. In this case, the heater’s status information is being visualized with tools like Grafana, and important alerts are sent out to mobile devices with PushingBox. With a setup like this, the Windhager will never go hungry again.

Continue reading “Heater Joins The Internet Of Things With ESP32 Board”

New Contest Puts PSoC Boards In The Hands Of 50 Entries

Today marks the beginning of the PSoC IoT design contest. Show us your idea for an interesting Internet-connected thing and we’ll send you a dev kit to actually build it.

With the help of Cypress, Digi-Key, and AWS IoT we’ll be sending out your choice of  PSoC 6 WiFi-BT Pioneer kit or Prototyping Kit to up to 50 entries just for publishing a great idea of something to build with them. As you guessed from the name, these provide WiFi and Bluetooth connectivity, but they’re also bristling with seven programmable analog blocks the PSoC is known for, and a hundred GPIO. They have prototyping add-ons like a 2.4″ screen for user interface, audio, IMU, capacitive touch, and a heap of other goodies.

You have until May 26th to post a project page on Hackaday.io outlining your idea — don’t forget to use that “Submit project to” button to enter it in the contest. Tells us all about the IoT project you want to build and which PSoC 6 board you plan to use. If your idea is picked, we’ll send you the dev board and you’ll have until August to actually build your idea. Grand Prize will receive a $500 prepaid Visa card, two runners up will each receive a $250 card.

Full details are available on the contest page. We know you’ve always wanted to give your fish a Twitter account, to have a dashboard that shows up-to-the minute stats on how much Boo Berry Cereal you have left, a beacon to give you push alerts when the laundry needs to make its way into the dryer, or perhaps you plan to build a new wave of Internet-connect pagers. Whatever it is, from a silly idea to a truly life-improving build, if it’s begging to spread its data far and wide, it’s a perfect idea for this contest.

The IoT Trap

I’m sure that you’ve heard about the Sonos speaker debacle. (If not, read about it on Hackaday.) Basically, a company that sells a premium Internet-connected speaker wanted to retire an older product line, and offered a 30% discount to people who would “trade in” their old speakers for new ones. The catch: they weren’t really trading them in, but instead flashing a “self-destruct” firmware and then taking it to the recycling.

Naturally, Sonos’ most loyal customers weren’t happy about intentionally bricking their faithful devices, a hubbub ensued, and eventually the CEO ended up reversing course and eating crow. Hackaday’s own Gerrit Coetzee wrote up our coverage and mentioned that maybe Sonos just couldn’t afford to support the service for the old products any more, and didn’t want them to remain in the wild. So much so, that it’s worth 30% of the cost of their current product to get out from under the implicit contract.

By buying one of these IoT devices, you’re paying more money up front for the promise that the company will keep supporting the service that it relies on into the future. But providing this service costs money, and as more and more “products” are actually services in disguise, we’ve seen case after case of working machines shut down because the company doesn’t want to keep paying for the service. It doesn’t seem to matter if the company is small, like Sonos, or an immensely wealthy monopoly player like Google. Somehow, the people planning these products have a much shorter lifetime in mind than their customers do, and fail to make the up-front price cover costs.

This puts these companies in a tough spot. The more a customer loves the device, the longer they’ll want to keep it running, and the worse the blowback will be when the firm eventually has to try to weasel its way out of a “lifetime” contract. And they are alienating exactly their most loyal customers — those who want to keep their widget running longer than might even be reasonable. Given that this whole business model is new, it’s not surprising that some firms will get it wrong. What’s surprising to me is how many fall into the IoT trap.

So take this as a cautionary tale as a consumer. And if you’re in a company offering a product that depends on a service to continue to function, ask yourself if you’re really going to be able to support it for the customer’s idea of the lifetime of the product. What looks like a great deal at a five-year horizon might bankrupt your company at ten. Will you, or your customers, be willing to throw their devices away? Should they be?

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 210 weeks or so. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter.

Want this type of article to hit your inbox every Friday morning? You should sign up!

Custom Firmware For Cheap Smart Bulbs Is A Cinch To Tinker With

It’s the end of another decade, and while we don’t have real hoverboards, flying cars, or affordable dental care, we do have multicolored lightbulbs you can control over WiFi. [Don Howdeshell] picked up a couple of cheap Merkury branded units in a Black Friday sale, and quickly set about hacking them.

By and large, many of these bulbs are manufactured by various companies and rebranded for whoever happens to place an order. The bulbs tend to use the Tuya IOT ecosystem. Based on the ESP8266, reflashing the bulbs with custom firmware is simple, thanks to the Tuya Convert project. Using a Linux computer with a WiFi card running in Access Point mode, it spoofs a server that tricks the Tuya product into downloading a firmware update. From there, the bulb is an open book, ready to do your bidding.

One of [Don]’s attempts didn’t go so swimmingly, however. Flashing the firmware failed and the bulb was non-functional. [Don] elected to to a teardown, photographing it for our perusal, before hooking up to the ESP8266 directly over its serial interface. From there, it was simple to reprogram the bulb with Tasmota firmware, getting it back up and running.

Security alone is a great reason for running your own firmware on IoT devices. It never hurts to know what you’re connecting to your network!

An Eight-Day Home Automation Hackathon Is Inspiration For Getting More Projects Done

There’s nothing quite like a deadline to cut through extras and get right at the heart of the problem. Maybe we should all follow Interpreet’s example and stop thinking about automating our homes and just make it in an eight-day hackathon. His talk at the 2019 Hackaday Superconference covers the zero-to-deployment home automation build he finished in the eight days leading up to his move from one continent to another.

Hackaday’s very own Inderpreet Singh found himself pulling up roots and moving from his home in India to teach at Centennial College in Toronto, Canada. He needed a way to keep an eye on his home from afar and the name of the game is IoT. When the only choice is “whatever works right now”, you can learn a lot about simple solutions.

He chose familiar hardware to work with, with the ESP8266 making up the bulk of the nodes and a Raspberry Pi as as a central hub for the setup. He chose to communicate between all the nodes on his system using WiFi because the hardware is robust and available. With security in mind, he keeps the automation system separate from the daily use WiFi system by grabbing an extra access point to serve as the automation network. The Raspberry Pi serves as a router of sorts; its Ethernet port is connected to the IoT device’s AP, while the onboard WiFi is used to connect to the home’s main AP for a connection to the wider Internet.

Software for the system is built on a REST API served by a Python Flask app. Many would advocate for using MQTT but Inderpreet’s testing with that protocol came up short as the broker he intended to use was no longer available. One of the interesting parts of his system design is that all nodes will check in at regular intervals; this allows them to inquire about actions they need to take, but it also allows the system to detect a malfunctioning node immediately. I’ve seen a similar trick used by Elliot Williams where he assigns a “ping” topic to all MQTT devices that causes them to report in with their IP address. Having a system to query and ensure the health of every node is a big tip to take away from this talk.

Continue reading “An Eight-Day Home Automation Hackathon Is Inspiration For Getting More Projects Done”

Home Safety Monitoring With IoT

Home automation is a popular project to undertake but its complexity can quickly become daunting, especially if you go further than controlling a few lights (or if you’re a renter). To test the waters you may want to start with something like this home safety monitor, which is an IoT device based on an Arduino. It allows remote monitoring of a home for things such as temperature, toxic gasses, light, and other variables, which is valuable even if you don’t need or want to control anything.

The device is built around an Arduino Nano 33 IOT which has WiFi and Bluetooth capabilities as well as some integrated security features. This build features a number of sensors including pressure/humidity, a gas/smoke detector, and a light sensor. To report all of the information it gathers around the home, an interface with Ubidots is configured to allow easy (and secure) access to the data gathered by the device.

The PCB and code for the project are all provided on the project page, and there are a number of other options available if Ubidots isn’t your preferred method of interfacing with the Internet of Things. You might even give Mozilla’s WebThings a shot if you’re so inclined.