2024 Brought Even More Customization To Boxes.py

If you have access to a laser cutter, we sincerely hope you’re aware of boxes.py. As the name implies, it started life as a Python tool for generating parametric boxes that could be assembled from laser-cut material, but has since become an invaluable online resource for all sorts of laser projects. Plus, you can still use it for making boxes.

But even if you’ve been using boxes.py for awhile, you might not know it was actually an entry in the Hackaday Prize back in 2017. Creator [Florian Festi] has kept up with the project’s Hackaday.io page all this time, using it as a sort of development blog, and his recent retrospective on 2024 is a fascinating read for anyone with an eye towards hot photonic action.

Continue reading “2024 Brought Even More Customization To Boxes.py”

FallingWater Clock Puts New Spin On A Common LCD

Sometimes, all it takes is looking at an existing piece of tech in a new way to come up with something unique. That’s the whole idea behind FallingWater, a gorgeous Art Deco inspired clock created by [Mark Wilson] — while the vertical LCD might look like some wild custom component, it’s simply a common DM8BA10 display module that’s been rotated 90 degrees.

As demonstrated in the video below, by turning the LCD on its side, [Mark] is able to produce some visually striking animations. At the same time the display is still perfectly capable of showing letters and numbers, albeit in a single column and with noticeably wider characters.

In another application it might look odd, but when combined with the “sunburst” style enclosure, it really comes together. Speaking of the enclosure, [Mark] used OpenSCAD to visualize the five layer stack-up, which was then recreated in Inkscape so it could ultimately be laser-cut from acrylic.

Rounding out the build is a “Leonardo Tiny” ATmega32U4 board, a DS3221 real-time clock (RTC), a couple of pushbuttons, and a light dependent resistor (LDR) used to dim the display when the ambient light level is low. All of the electronics are housed on a small custom PCB, making for a nicely compact package.

This build is as simple as it is stylish, and we wouldn’t be surprised if it inspired more than a few clones. At the time of writing, [Mark] hadn’t published the source code for the ATmega, but he has provided the code to generate the cut files for the enclosure, as well as the Gerber files for the PCB. If you come up with your own version of this retro-futuristic timepiece, let us know.

Continue reading “FallingWater Clock Puts New Spin On A Common LCD”

A Robot Meant For Humans

Although humanity was hoping for a more optimistic robotic future in the post-war era, with media reflecting that sentiment like The Jetsons or Lost in Space, we seem to have shifted our collective consciousness (for good reasons) to a more Black Mirror/Terminator future as real-world companies like Boston Dynamics are actually building these styles of machines instead of helpful Rosies. But this future isn’t guaranteed, and a PhD researcher is hoping to claim back a more hopeful outlook with a robot called Blossom which is specifically built to investigate how humans interact with robots.

For a platform this robot is not too complex, consisting of an accessible frame that can be laser-cut from wood with only a few moving parts controlled by servos. The robot is not too large, either, and can be set on a desk to be used as a telepresence robot. But Blossom’s creator [Michael] wanted this to help understand how humans interact with robots so the latest version is outfitted not only with a large language model with text-to-speech capabilities, but also with a compelling backstory, lore, and a voice derived from Animal Crossing that’s neither human nor recognizable synthetic robot, all in an effort to make the device more approachable.

To that end, [Michael] set the robot up at a Maker Faire to see what sorts of interactions Blossom would have with passers by, and while most were interested in the web-based control system for the robot a few others came by and had conversations with it. It’s certainly an interesting project and reminds us a bit of this other piece of research from MIT that looked at how humans and robots can work productively alongside one another.

Newly Completed Overly-Complex Clock Synchronizes Multiple Mechanisms

Some time ago [Kelton] was working on a clock inspired by Rube Goldberg contraptions. It uses only a single motor, and he’s proud to now show off the finished product (video, embedded below.)

The clock shows hours on the left, and minutes on the right. Every sixty minutes the clock drops a marble. That marble kicks off a series of visually-satisfying operations that culminate in advancing the hour. Then everything resets, and it continues for as long as it has power.

The hour oscillates in a very satisfying manner as it locks in.

At the top of each hour, the minute hand tips a marble with a gravity cam. That marble runs down a track gaining enough momentum to flip a kicker, and a short series of falling dominoes builds enough force to tip and trigger the spring-loaded ratchet that locks in a new hour. You can skip directly to 2:09 if you just want to listen to [Kelton] explain the whole operation from beginning to end.

We think it’s very interesting to note that this clock’s complexity is, if anything, understated. Each of the mechanisms involved must individually reset by their own separate mechanisms, each of which are as intriguing as their showier counterparts, and we’re sure they were every bit as difficult to get just right. And of course, it’s all driven by a single motor.

You may recall the promising start this clock project was off to and we’re delighted to see it come to completion, especially considering its complexity. Not every project sees completion, and fewer still get a version two, but that’s okay. What really floats our boat is seeing the process and details as well as hearing about what worked and what didn’t. We’re glad this clock reached the finish line, but even if something doesn’t work out, there’s always something to learn.

Continue reading “Newly Completed Overly-Complex Clock Synchronizes Multiple Mechanisms”

A Simple Laser Harp MIDI Instrument

Craig Lindley is a technical author and a prolific maker of things. This simple project was his first attempt to create a laser harp MIDI device. While on vacation, Craig saw a laser harp with only three strings and decided to improve upon it by expanding it to twelve strings. The principle of operation is straightforward: twelve cheap diode laser modules aim a beam towards an LDR, which changes resistance if the light level changes when the beam is interrupted.

The controller is a simple piece of perf board, with a Wemos D1 mini ESP32 module flanked by some passives, a barrel socket for power, and the usual DIN connector for connecting the MIDI instrument. Using the ESP32 is a smart choice, removing all the need for configuration and user indication from the physical domain and pushing it onto a rarely-needed webpage. After a false start, attempting to use a triangular frame arrangement, [Craig] settled upon a simple linear arrangement of beams held within a laser-cut wooden box frame. Since these laser modules are quite small, some aluminium rod was machined to make some simple housings to push them into, making them easier to mount in the frame and keeping them nicely aligned with their corresponding LDR.

Sadly, the magnetic attachment method [Craig] used to keep the LDRs in place and aligned with the laser didn’t work as expected, so it was necessary to reach for the hot glue. We’ve all done that!

An interesting addition was using an M5 stack Unit-Synth module for those times when a proper MIDI synthesiser was unavailable. Making this luggable was smart, as people are always fascinated with laser harps. That simple internal synth makes travelling to shows and events a little easier.

Laser harps are nothing new here; we have covered plenty over the years. Like this nice build, which is more a piece of art than an instrument, one which looks just like a real harp and sounds like one, too, due to the use of the Karplus-Strong algorithm to mimic string vibrations.

Intentionally Overly-Complex Clock Is Off To A Good Start

[Kelton] from Build Some Stuff decided to create a clock that not only had kinetic elements, but a healthy dose of Rube Goldberg inspiration. The result is a work in progress, but one that looks awfully promising.

The main elements of the design are rotating pieces that indicate the hours and minutes, but each hour is advanced solely by the satisfying physical culmination of multiple interacting systems. Those systems also completely reset themselves every hour.

Each hour, a marble run kicks off a short chain reaction that culminates in advancing the hour.

At the top of the hour, a marble starts down a track and eventually tips over a series of hinged “dominoes”, which culminate in triggering a spring-loaded ratchet that advances the hour. The marble then gets carried back to the top of the device, ready for next time. Meanwhile, the domino slats and spring-loaded ratchets all get reset by a pulley system.

There’s still some work to do in mounting the motor, pulley system, and marble run. Also, a few bugs have surfaced, like a slight overshoot in the hour display. All par for the course for a device with such a large number of moving parts, we suppose.

[Kelton] has a pretty good sense how it will all work in the end, and it looks promising. We can’t wait to see it in its final form, but the tour of clock so far is pretty neat. Check it out in the video, embedded just under the page break.

As for the clock’s inspiration, Rube Goldberg’s cultural impact is hard to overstate and our own Kristina Panos has an excellent article about the man that might just teach you something you didn’t know.

Continue reading “Intentionally Overly-Complex Clock Is Off To A Good Start”

Clock Mixes Analog, Digital, Retrograde Displays

Unique clocks are a mainstay around here, and while plenty are “human readable” without any instruction, there are a few that take a bit of practice before someone can glean the current time from them. Word clocks are perhaps on the easier side of non-traditional displays but at the other end are binary clocks or even things like QR code clocks. To get the best of both worlds, though, multiple clock faces can be combined into one large display like this clock build from [imitche3].

The clock is actually three clocks in one. The first was inspired by a binary clock originally found in a kit, which has separate binary “digits” for hour, minute, and second and retains the MAX 7219 LED controller driving the display. A standard analog clock rests at the top, and a third clock called a retrograde clock sits at the bottom with three voltmeters that read out the time in steps. Everything is controlled by an Arduino Nano with the reliable DS3231 keeping track of time. The case can be laser-cut or 3D printed and [imitche3] has provided schematics for both options.

As far as clocks builds go, we always appreciate something which can be used to tell the time without needing any legends, codes, or specialized knowledge. Of course, if you want to take a more complex or difficult clock face some of the ones we’re partial to are this QR code clock which needs a piece of hardware to tell the time that probably already has its own clock on it.