3D Print a Thinner Car Key

Almost all modern cars come with keyless entry, some even come with keyless start. Of course, the price you pay for this technology is a bulky plastic keyfob that is an absolute pain to remove from your pockets, and generally spoils the lines of your carefully chosen outfit. [Jeremy] decided enough was enough.

The project begins with a careful disassembly of the original key. This is important to avoid damaging the PCB inside, particularly if there are any delicate wire links between different sections of the keyfob. With the piece disassembled, it was then time to start designing a replacement encasement to hasten escapement while pacing the pavement.

The 3D printer really is the perfect tool for the job here, and [Jeremy] employs it well. With this being a proximity-based keyfob, the buttons are only necessary if you want to operate the locks at a distance. They simply took up too much vertical space, so they had to go. In the end, with a redesigned housing for the PCB, and while retaining the backup mechanical key, the new fob is just 11mm, down from 18mm – a nearly 40% saving in thickness!

It’s a tidy way to clean up your pockets and make life easier. We’ve seen similar work before, too.

Coaxing Water From Desert Air

From the windtraps and stillsuits of Dune’s Arrakis, to the moisture vaporators of Tatooine, science fiction has invented fantastic ways to collect the water necessary for life on desert worlds. On Earth we generally have an easier go of it, but water supply in arid climates is still an important issue. Addressing this obstacle, a team of researchers from MIT and the University of California at Berkeley have developed a method to tease moisture out of thin air.

A year after the team first published their idea, they have successfully field-tested their method on an Arizona State University rooftop in Tempe, proving the concept and the potential for scaling up the technology. The device takes advantage of metal-organic framework(MOF) materials with high surface area that are able to trap moisture in air with as little as 10% humidity — even at sub-zero dewpoints. Dispensing with the need for power-hungry refrigeration techniques to condense moisture, this technique instead relies on the heat of the sun — although low-grade heat sources are also a possibility.

Continue reading “Coaxing Water From Desert Air”

LEGO Meets Nintendo Switch

As you probably know, the Nintendo Switch is the incredibly popular console of the moment. You of course also know that LEGO has been popular since the beginning of recorded history. So it was only a matter of time before somebody decided that these two titans of youthful entertainment needed to combine up like some kind of money-printing Voltron. You know, for science.

[Vimal Patel], a known master of all things plastic brick related, decided to take up the challenge with a few experimental LEGO accessories for the Switch. These add-ons are largely designed to make playing the Switch a bit more comfortable, but represent an interesting first step to more complex hardware modifications down the road.

The key to these experiments are a set of 3D printed rails which allow you to attach standard LEGO parts to the Switch. With the rails installed, [Vimal] demonstrates a simple “kick stand” which improves the system’s stability when not being used in handheld mode.

A few different steering wheel modifications are also demonstrated, which use an impressive bit of engineering to move the controller’s analog stick left and right with rotational input on the wheel. Both variations are shown in-use with Mario Kart, and seem to do the job.

It will be interesting to see what kind of projects will be made possible at the intersection of Switch and LEGO when Nintendo Labo goes live later this month.

Continue reading “LEGO Meets Nintendo Switch”

It’s a Spider! It’s a Droideka! It’s Both!

Beware, arachnophobes, the robots are coming for you!

What else would you be expected to think if you watched a hexapod robot display its best Transformers impression by turning into a wheel and pushing itself in your direction? The BionicWheelBot — developed by [Festo] — should rightly remind you of the cartwheeling Flic-Flac spider, the main inspiration for the robot. Of course, Star Wars fans might justifiably see a Droideka.

The BionicWheelBot can — almost — seamlessly transition between crawling around on six legs, to literally rolling away. To do so, its three pairs of legs sequentially fold up into a shape befitting its namesake and then pauses for a moment — almost for dramatic effect — before the real fun begins.

Continue reading “It’s a Spider! It’s a Droideka! It’s Both!”

The Amazing Hacks Of World Create Day

For this year’s Hackaday Prize, we started an amazing experiment. World Create Day organized hundreds of hackerspaces around the world to come together and Build Hope for the future. This was an experiment to bring community shops and workspaces together to prototype their entries for the Hackaday Prize, and boy was it a success. We had hackerspaces from Portland to Pakistan taking part, and these are just a few of the amazing hacks they pulled off.

Students In Canada Repairing LipSyncs!

The theme of this year’s Hackaday Prize is to Build Hope, and students in Burnaby, British Columbia worked on some very cool projects that did just that. They created custom video game controllers, prototyped a few exoskeleton arms, and repaired LipSyncs. A LipSync is a mouth-operated joystick that allows a person to control a cursor on a computer with a minimum amount of head and neck movement. The idea behind the LipSync is to give wheelchair-bound people access to computers. This is important because an estimated one million people in Canada and the United States have limited or no use of their arms, rendering touchscreens inoperable.

The LipSync was an entry into the 2016 Hackaday Prize, and while it didn’t win the grand prize, it did bring a device that usually costs $3,000 down to about $300. That’s an order of magnitude of cost reduction that Builds Hope for the future. It’s amazing!

Raspberry Pis and Tschunk Slushies!

You might think that mixing alcohol and electronics might be dangerous, but not the people of kraut space, the hackerspace in Jena, Germany. For their World Create Day adventures, they made Tschunk Slushies! What is Tschunk? It’s rum and Club Mate, the definitive hacker drink! You might even say the addition of ethanol made it even more of a hacker drink. Ha ha.

While the Tschunk Slushies were mixing up, the team at the Jena Hackerspace set to work on their World Create Day project, an interface that logs their electricity usage. In reality this is just a photosensor taped to their power meter, but they’ve hooked everything up to a Raspberry Pi, giving them the ability to monitor electricity consumption over the Internet. That’s amazing. Governments and utility companies have spent billions of dollars developing ‘smart’ electricity meters, but a few ‘hackers’ have created their own in just hours! It’s almost as if that ‘hacker’ title isn’t bad at all, and being a ‘hacker’ is a good thing!

Making Laser Cutters Safe And Soldering Keychains

You’ll shoot your eye out, kid! Or at least you stand a decent chance of suffering irreversible eye damage if you’re running a laser cutter with the lid open. And for some reason, most of the cheap laser cutters out there come without safety interlocks if you can believe it. For his World Create Day Project, [RoboterFreak] made a laser cutter more secure. By putting a relay, microswitch, and Arduino in line with the laser tube, you can safely modify an off-the-shelf laser cutter to be vastly safer.

It’s not much, but it goes a long way toward making a laser cutter safe. With the simple addition of a switch, this laser cutter is now a machine that can be used within a quarter mile of children. This is something simple that you should do at your own hackerspace.

But World Create Day and the Hackaday Prize isn’t only about fretting over safety concerns. The folks at Thimble.io had fun soldering their own keychain flashlight. This is an awesome way to learn how to solder and hardware development. That’s exactly what we’re looking for in this year’s Hackaday Prize, by the way. We want people who will Build Hardware to Change The World.

The Hackaday Prize is running until November, and there’s still plenty of time to get your entry in. It doesn’t even have to be related to World Create Day, the most amazing virtual congregation of hackerspaces the world has ever seen. You can start your entry for the Hackaday Prize right here, build a project that will Build Hope, and be in the running to win tens of thousands of dollars. It’s an amazing contest, and we couldn’t have done it without the support of our amazing online community.

The Basics and Pitfalls of Pointers in C

Pointers — you either love them, or you haven’t fully understood them yet. But before you storm off to the comment section now, pointers are indeed a polarizing subject and are both C’s biggest strength, and its major source of problems. With great power comes great responsibility. The internet and libraries are full of tutorials and books telling about pointers, and you can randomly pick pretty much any one of them and you’ll be good to go. However, while the basic principles of pointers are rather simple in theory, it can be challenging to fully wrap your head around their purpose and exploit their true potential.

So if you’ve always been a little fuzzy on pointers, read on for some real-world scenarios of where and how pointers are used. The first part starts with regular pointers, their basics and common pitfalls, and some general and microcontroller specific examples.

Continue reading “The Basics and Pitfalls of Pointers in C”

Detoured: RF And Film

The technology behind capturing aerial video is so unbearably cool. Not only do you have fancy cameras that cost as much as a car, you also have remote control camera mounts on helicopters and amazing microwave links going to the ground. This isn’t your typical FPV setup on a quadcopter; there are jet turbines and S-band transmitters here.

One of the people behind these amazing aerial shots is [Greg Johnson] of RF Film based out of Whiteman airport in sunny southern California. He’s done work for Black Panther, several fo the Fast & Furious films, Marvel movies, and is working on the new Top Gun reboot. As part of the Supplyframe Design Lab’s Detoured series, lead Staff Designer [Majenta Strongheart] visited RF Film to take a look at what goes into getting high-quality images from aerial video platforms.

[Greg] got his start at a helicopter company in Michigan, and eventually moved up to working for ESPN, shooting video of offshore speedboat races. There’s no other way to do this than by the air, but there are problems. You need to get video to the ground somehow, and that means microwave transmitters. [Greg] learned all of this by simply doing it, demonstrating some hacker cred. In fact, some of the first remote control systems he built were built around sprinkler systems.

Now, [Greg]’s work is significantly more advanced than modified sprinkler systems. He’s making custom hardware for 1080 cameras worn in a hat for drag racing. There are gimbals that roll a camera around its axis, and all of this is custom made in [Greg]’s shop.

There’s a lot of work that goes into producing video for aerial photography, and it’s much more complex than sticking a runcam on a quad. There’s antenna design, FCC regs, and custom robots that point the camera where it needs to be. RF Films is one of the best in the business, and we’d like to thank them for giving us a glimpse into their shop and workflow.

You can check out the video tour of the shop below.

Continue reading “Detoured: RF And Film”