Laser Sound Visualizations Are Not Hard To Make

You might think that visualizing music with lasers would be a complicated and difficult affair. In fact, it’s remarkably simple if you want it to be, and [byte_thrasher] shows us just how easy it can be.

At heart, what you’re trying to do is make a laser trace out waveforms of the music you’re listening to, right? So you just need a way to move the laser’s beam along with the sound waves from whatever you’re listening to. You might be thinking about putting a laser on the head of a servo-operated platform fed movement instructions from a digital music file, but you’d be way over-complicating things. You already have something that moves with the music you play — a speaker!

[byte_thrasher’s] concept is simple. Get a Bluetooth speaker, and stick it in a bowl. Cover the bowl with a flexible membrane, like plastic wrap. Stick a small piece of mirror on the plastic. When you play music with the speaker, the mirror will vibrate and move in turn. All you then have to do is aim a safe laser in a safe direction such that it bounces off the mirror and projects on to a surface. Then, the laser will dance with your tunes, and it’ll probably look pretty cool!

We’ve seen some beautiful laser visual effects before, too. Just be careful and keep your power levels safe and your beams pointing where they should be.

Continue reading “Laser Sound Visualizations Are Not Hard To Make”

A Parts Bin MIDI Controller In 24 Hours

Part of the reason MIDI has hung on as a standard in the musical world for so long is that it is incredibly versatile. Sure, standard instruments like pianos and drums can be interfaced with a computer fairly easily using this standard, but essentially anything can be converted to a MIDI instrument with the right wiring and a little bit of coding. [Jeremy] needed to build a MIDI controller in a single day, and with just a few off-the-shelf parts he was able to piece together a musical instrument from his parts bin.

The build is housed in an off-brand protective case from a favorite American discount tool store, but the more unique part of the project is the choice to use arcade buttons as the instrument’s inputs. [Jeremy] tied eight of these buttons to an Arduino Uno to provide a full octave’s worth of notes, and before you jump to the comments to explain that there are 12 notes in an octave, he also added a button to the side of the case to bend any note when pressed simultaneously. An emergency stop button serves as a master on/off switch and a MIDI dongle on the other side serves as the interface point to a computer.

After a slight bit of debugging, the interface is up and running within [Jeremy]’s required 24-hour window. He’s eventually planning to use it to control a custom MIDI-enabled drum kit, but for now it was fun to play around with it in some other ways. He’s also posted the project code on a GitHub page. And, if this looks a bit familiar, this was not [Jeremy]’s first MIDI project. He was also the creator of one of the smallest MIDI interfaces we’ve ever seen.

Continue reading “A Parts Bin MIDI Controller In 24 Hours”

Digital Audio Workstation In A Box

Although it’s still possible to grab a couple of friends, guitars, and a set of drums and start making analog music like it’s 1992 and there are vacant garages everywhere yearning for the sounds of power chords, the music scene almost demands the use of a computer now. There are a lot of benefits, largely that it dramatically lowers the barrier to entry since it greatly reduces the need for expensive analog instruments. It’s possible to get by with an impressively small computer and only a handful of other components too, as [BAussems] demonstrates with this tiny digital audio workstation (DAW).

The DAW is housed inside a small wooden box and is centered around a Behringer JT-4000 which does most of the heavy lifting in this project. It’s a synthesizer designed to be as small as possible, but [BAussems] has a few other things to add to this build to round out its musical capabilities. A digital reverb effects pedal was disassembled to reduce size and added to the DAW beneath the synthesizer. At its most basic level this DAW can be used with nothing but these components and a pair of headphones, but it’s also possible to add a smartphone to act as a sequencer and a stereo as well.

For a portable on-the-go rig, this digital audio workstation checks a lot of the boxes needed including MIDI and integration with a computer. It’s excellent inspiration for anyone else who needs a setup like this but doesn’t have access, space, or funds for a more traditional laptop- or desktop-centered version. For some other small on-the-go musical instruments we recently saw a MIDI-enabled keyboard not much larger than a credit card.

Digital Bumper Sticker Tells Everyone What You’re Listening To

Bumper stickers are usually political, crude, or otherwise inflammatory. Rather a more fun example is this digital creation from [Guy Dupont], who made a bumper sticker that broadcasts what he’s listening to on the stereo.

[Guy] found a nice wide 11-inch bar LCD that was the right aspect ratio to suit the “bumper sticker” aesthetic. It had an HDMI interface, so he decided to drive it with a Raspbery Pi Zero 2W. Power for the system was derived from 12-volt lines going to his vehicle’s rear view camera. For an enclosure, he simply stuck the Pi and a buck converter on the back of the display and heat shrinked the whole thing. He also threw some magnets in there to stick it to the car.

How does the screen know what song to display? Well, [Guy] already has his Spotify listens scrobbling to Last.fm. Thus, he just made a script that scrapes his Last.fm page, which runs on a Particle Boron microcontroller, which has a cellular connection of its own. The Boron gets the song data, and spits it over to the Pi via Bluetooth. Then the Pi generates an image for the display.

Oh, and there’s also a neat Easter Egg. In honor of brat summer, the background changes to #8ACE00 green if the system detects you’re listening to Charli XCX. Neat.

It’s a neat build with a lot of moving parts. We’re surprised we haven’t seen anything like this before though, it’s really rather fun. Also, how’s about that taste of the old Internet—when was the last time you heard somebody mention scrobbling? Gosh, we’re getting old.

We’ve featured some of [Guy’s] works before, too, like the amusing Mailblocks project. Video after the break.

Continue reading “Digital Bumper Sticker Tells Everyone What You’re Listening To”

Building A Subwoofer Box Out Of Decking Material

When you go to build a subwoofer box, wood is the most common choice. When it came to his project, though, [Startup Chuck] decided to go a different route entirely. Rather than the usual plywood or MDF, he decided to try Trex decking instead. Why? He had some lying around, and he suspected it might just sound good.

If you’re unfamiliar with it, Trex decking is a composite material made of recycled materials like reclaimed wood and plastic film. The best part, though? Trex decking is twice as dense as MDF. That makes it good for speaker box use because it flexes less and thus absorbs less energy from the subwoofer. [Chuck] walks us through cutting out the parts for the box and the subsequent assembly. Ultimately, it’s not dissimilar from building a speaker box out of wood; the material is simply not that different—just denser.

[Chuck] also puts his new sub through some quick little tests, demonstrating that minimal vibration is passed through to the enclosure itself. He reports that the final build has a “nice, deep sound.” Meanwhile, if you don’t like working with your hands, you could always 3D-print your speaker enclosures instead.

Continue reading “Building A Subwoofer Box Out Of Decking Material”

A Non-Musical Use Case For 8-Track

There was a time in the not-too-distant past when magnetic tape was the primary way of listening to and recording audio. Most of us are familiar with the cassette tape, a four-track system that plays first one side of the tape, then the other. There was the eight-track tape as well which did not have quite as much popularity or longevity but did have a few interesting features that [Serial Hobbyism] took advantage of to make an interactive game.

The defining feature of the eight-track system, beyond the obvious eight tracks on the tape, is that the tape runs in a continuous loop, never needing to be stopped or flipped over. Instead, four buttons select pairs of the eight tracks, moving a head immediately to make the switch on-the-fly. [Serial Hobbyism]’s game plays a trivia-style audio recording and asks the player to answer questions by pushing one of the four “program” buttons to switch tracks. If the correct track is selected, the recorded audio congratulates the player and then continues on with the game. Likewise, if an incorrect track is selected, the recording notes that and the game continues.

Another interesting feature of this game is that it can be played without modifying an eight-track player, as the selectable tracks are a core function of this technology. They can be used in a similar way as cassette tapes to store computer data and a data recorder similar to the eight-track system was used on the Voyager space probes, although these only bear a passing resemblance.

Continue reading “A Non-Musical Use Case For 8-Track”

The Commodordion Gets A Big Usability Upgrade

The chiptune scene is dominated by Game Boys and other Nintendo hardware, but one should never forget the gorgeous, beautiful tones that come from the hallowed Commodore 64. [Linus Åkesson] knows this well, and it’s at the heart of his work on the Commodordion. Now, he’s built an even better version.

The original idea he had was to build an accordion-like control surface for the SID chip in a Commodore 64. The device is capable of creating beautiful accordion-like music with a simple 8-bit flair. He has since dubbed the original Commodordion the “bass Commodordion,” while the new version is classified as a tenor instrument.

The prime upgrades are ergonomic. The previous instrument was too heavy, with the left hand having to carry an entire Commodore 64 on its own. It was also hard to reach the keys. The new version is much lighter, with one of the two C64s of the original having been removed. The supporting electronics have been redesigned to more neatly fit into a space behind the bellows.

The result is a machine that’s far easier to play, and one that won’t injure the user in extended play sessions. “It’s now a pleasure, not a pain,” says [Linus]. The payoff in usability is obvious, and the tunes themselves are hauntingly beautiful.

We first covered the Commordordion back in 2022, but it wasn’t the first time we saw one of [Linus]’s impressive creations.

Continue reading “The Commodordion Gets A Big Usability Upgrade”