The Tools To Fight Against Single-Use Plastic

Imagine for a moment that you design products for a living. But you can’t design all the things, so you have to buy some of your stuff from big-box stores just to go about your everyday life. This is more or less what happened to [Eric Strebel], who recently bought a bathroom faucet from IKEA. This particular flat-pack faucet came with a single-use plastic nut driver to be used in putting the faucet together. Since there is no marking that indicates the plastic type, it can’t be easily recycled. Not even the size of the business end is indicated. So between the shoddy plastic construction and the lack of information, most people are going to just throw this thing away. And that’s terrible.

So what’s to be done? Aside from boycotting IKEA (which [Eric] may do in the future for all we know), there’s not much to do but to offer up solutions on public platform and see what happens. To that end, [Eric] came up with five different ways of making this nut driver that are arguably more sustainable than single-use mystery plastic.

Say what you will about sustainability of using metals, which have to be mined, versus plastic – many of these methods use no tooling, so that’s something. Nut drivers made by [Eric] would instead be laser-cut from flat stock and either folded up and welded, or assembled from a multi-piece cut into a single-piece tool via perpendicular members that slot together. Or as [Eric] points out, the design could stay exactly the same as the plastic original and be die-cast instead.

It’s certainly an interesting exercise in design, and it’s really cool to see a little bit into [Eric]’s thought process when it comes to improving existing things. Be sure to check it out after the break, and let us know how you’d have done it better.

Continue reading “The Tools To Fight Against Single-Use Plastic”

Weed Eater String Made From Plastic Bottles

For those who don’t mind constantly adding tiny but measurable amounts of microplastics to their landscaping, string trimmers are an excellent way of maintaining edging around garden beds, trimming weeds, or maintaining ground covers on a steep hill. One problem with them, though, is that not only is the string consumable but it can be expensive. Plus, if you have a trimmer with a proprietary spool you need to hope the company never goes out of business. Or, you can simply refill your string spool with this handy tool.

The build uses plastic bottles to create the string from what would likely become garbage anyway. First, a sharp roller-style knife slices the plastic into a long thin strip. Once cut, it is fed through a heater similar to a hot end on a 3D printer which allows the plastic to be deformed or forged into a cylinder. From there the plastic is added onto a spool, which also has the motor in it that drives the entire mechanism. In this case it is using an old variable-speed drill.

From the comments on the video, there is some discussion about the economics of using this string in a weed eater. It’s likely the plastic won’t last as long as specialty string trimmer string, and the time and expense of making the plastic may never save much money. But we have to give credit to the ingenuity nonetheless. And, if you’re really into recycling plastic just for the sake of keeping it out of the landfill, there are plenty of other ways to go about accomplishing that goal.

I will NEVER buy weed whip line again! from landscaping

Hackaday Prize 2022: Upcycling Acrylic Scraps

Living and working in a remote rain forest may sound idyllic to those currently stuck in bland suburbia, and to be sure it does have plenty of perks. One of the downsides, though, is getting new materials and equipment to that remote location. For that reason, [Digital Naturalism Laboratories], also known as [Dinalab], has to reuse or recycle as much as they can, including their scraps of acrylic leftover from their laser cutter.

The process might seem straightforward, but getting it to actually work and not burn the acrylic took more than a few tries. Acrylic isn’t as thermoplastic as other plastics so it is much harder to work with, and it took some refining of the process. But once the details were ironed out, essentially the acrylic scraps are gently heated between two steel plates (they use a sandwich press) and then squeezed with a jack until they stick back together in one cohesive sheet. The key to this process is to heat it and press it for a long time, typically a half hour or more.

With this process finally sorted, [Dinalab] can make much more use of their available resources thanks to recycling a material that most of us would end up tossing out. It also helps to keep waste out of the landfill that would otherwise exist in the environment indefinitely. And, if this seems familiar to you, it’s because this same lab has already perfected methods to recycle other types of plastic as well.

Continue reading “Hackaday Prize 2022: Upcycling Acrylic Scraps”

Vicious Little Desktop Shredder Pulverizes Plastic Waste

We’ve all likely seen video of the enormous industrial shredders that eat engine blocks for lunch and spit out a stream of fine metal chips. The raw power of these metal-munching monsters is truly fearsome, and they appear to be the inspiration for SHREDII, the miniature plastic shredder for at-home recycling of plastic waste.

The fact that SHREDII isn’t all that large doesn’t make it any less dangerous, at least to things smaller and softer than engine blocks, like say fingers. The core of the shredder is a hexagonal axle carrying multiple laser-cut, sheet steel blades. The rotating blades are spaced out along the axle so they nest between a bed of stationary blades; rotating the common axle produces the shearing and cutting action needed to shred plastic.

On version one of the shredder, each blade had two hooked teeth, and the whole cutting head was made from relatively thick steel. When driven by a NEMA 34 stepper — an admittedly odd choice but it’s what they could get quickly — through a 50:1 planetary gearbox, the shredder certainly did the business. The shreds were a little too chunky, though, so version two used thinner steel for the blades and gave the rotary blades more teeth. The difference was substantial — much finer shreds that were suitable for INJEKTO, their homebrew direct-feed injection molding machine.

There’s a lot to be said for closing the loop on plastics used in desktop manufacturing processes, and the team of SHREDII and INJEKTO stands to help the home gamer effectively reuse plastic waste. And while that’s all to the good, let’s face it — the oddly satisfying experience of watching a shredder like this chew through plastic like it isn’t even there is plenty of reason to build something like this.

Continue reading “Vicious Little Desktop Shredder Pulverizes Plastic Waste”

Recycling Plastic Into Filament

Plastic is a remarkable material in many ways. Cheap, durable, and versatile, it is responsible for a large percentage of the modern world we live in. As we all know, though, it’s not without its downsides. Its persistence in the environment is quite troubling, so any opportunity we can take to reduce its use is welcome. This 3D printed machine, although made out of plastic, is made out of repurposed water bottles that have been turned into the filament for the 3D printer.

While there’s not too much information available on the site, what we gather is that the machine cuts a specific type of plastic water bottle made out of PET plastic into strips, and then feeds the strips into a heated forming tool. The tool transforms the strips into the filament shape and spools them so they are ready to feed back into a 3D printer. As a proof of concept, it seems as though this machine was made from repurposed plastic, but it could also be made using whatever filament you happen to have on hand.

As far as recycling goes, this is a great effort to keep at least some of it out of landfills and oceans. Unfortunately, plastic can’t be recycled endlessly like metal, as it will eventually break down. But something like this could additionally save on some filament costs for those with access to these types of bottles. Other options for creating your own filament also include old VHS tapes, but you will likely need a separate machine for that.

Stresses Revealed With A Polariscope

There are a lot of ways that stresses can show up, at least when discussing materials science. Cracks in concrete are a common enough example, but any catastrophic failure in a material is often attributable to some stress that couldn’t be withstood. If you’re interested in viewing those stresses before they result in damage to the underlying material, take a look at this DIY polariscope which can view internal stresses in glass and other clear objects.

The polariscope takes its name from the fact that it uses polarized light to view the internal structure of a transparent object such as glass. When the polarized light passes through glass in a certain way, the stresses show up as lighter areas thanks to the stressed glass bending the light back into view. This one is constructed with a polarizing filter placed in front of an LCD screen set to display a completely white image. When glass is placed between the screen and the filter no light is seen through the polariscope unless there are stresses in the glass. Even placing a force on an otherwise un-stressed glass tube can show this effect, and [Advanced Tinkering], this project’s creator, has several other creations which show this effect in striking detail.

The effect can also be observed as colored areas in other plastic materials as well. It’s an interesting tool which can help anyone who frequently works with glass, but it’s also interesting on its own to see clues left behind from the manufacturing process of various household items. We’ve seen some other investigative methods for determining how other household items are mass produced as well, like this project which breaks down the injection molding process.

Continue reading “Stresses Revealed With A Polariscope”

Great Computer Hacks Make Hackers Hacker Computers

In the year 1995, computers were, well… boring. The future wasn’t here yet, and computers were drab, chunky beige boxes. Sure, there were some cool-ish computers being sold, but the landscape was still relatively barren. But as you’ll see in the video below the break, it doesn’t have to be that way, and the [Hackers Curator] shows us the way by recreating Johnny Lee Miller’s computer from the 1995 movie Hackers.

Hackers wasn’t popular when it came out, but over the years it has gained quite a following. It portrayed computers and the people who loved them in completely new ways, representing a culture that has never existed. Even so, it inspired so many young hacker types. Among those inspired is the crew over at [Hackers Curator] and they have taken it upon themselves to, uh… curate… the props, costumes, and stories surrounding the movie.

Recreating Dade’s iconic camo “luggable” computer came with quite a lot of difficulty. It turns out that the original movie props were working custom computers that used hacked together customized cases and Mac Powerbook 180c internals. Dade’s (aka Zer0 Cool and Crash Override) was mashup of the a Compaq Portable 486c and the aforementioned Mac. [HackersCurator] have lovingly recreated this prop from two broken computers, but chose to run the internals with a Raspberry Pi.

The techniques used in the creation of this beastly cyberdeck are ones that can be used in building so many other projects, even if you’re not a Hackers hacker. Customizing the plastics and placing a trackball in the most awkward of spots was expertly done, and we’ll be referring to it in the future for guidance when doing similar projects.

Are movie replica hacks your thing? You’re in luck! It turns out that this isn’t [Hackers Curator]’s first build. In 2019 they tackled Lord Nikon’s laptop, and of course, we covered that one too!

Continue reading “Great Computer Hacks Make Hackers Hacker Computers”