Caterpillar-Like Soft Robot With Distributed Programmable Thermal Actuation

Researchers at North Carolina State University have created a soft robot that moves in a distinctly caterpillar-like manner. As detailed in the research paper in Science Advances by [Shuang Wu] and colleagues, the robot they developed consists of a layer of liquid crystalline elastomers (LCE) and polydimethylsiloxane (PDMS) with embedded silver nanowire that acts as a heater.

The LCE is hereby designed as a thermal bimorph actuator, using a distinct thermal expansion coefficient between the LCE and PDMS sides to create a highly controllable deformation and thus motion. Since the nanowire is divided into sections that can be individually heated, the exact deformation can be quite tightly controlled, enabling the crawling motion.

(A) Schematics of the forward locomotion of a caterpillar. (B) Schematics of the reverse locomotion of a caterpillar. (C) Snapshots of the crawling robot in one cycle of actuation for reverse locomotion. (D) Snapshots of the crawling robot in one cycle of actuation for forward locomotion. (E) infrared image of the crawling robot with 0.05-A current injected in channel 1 and the tilted view of the crawling robot. (F) Infrared image of the crawling robot with 30-mA current injected in channel 2 and the corresponding tilted view of the crawling robot. (Credit: Shuang Wu, et al. (2023))
(A) Schematics of the forward locomotion of a caterpillar. (B) Schematics of the reverse locomotion of a caterpillar. (C) Snapshots of the crawling robot in one cycle of actuation for reverse locomotion. (D) Snapshots of the crawling robot in one cycle of actuation for forward locomotion. (E) infrared image of the crawling robot with 0.05-A current injected in channel 1 and the tilted view of the crawling robot. (F) Infrared image of the crawling robot with 30-mA current injected in channel 2 and the corresponding tilted view of the crawling robot. (Credit: Shuang Wu, et al. (2023))

As can be seen in the video below, the motion is fairly rapid and quite efficient, as well as decidedly caterpillar-like. Although the current prototype uses external control wires that supply the current, it might be possible to integrate a power supply and control circuitry in a stand-alone robot. Since the heater works on low voltage (5 V) and relatively little power is required, this would seem to make stand-alone operation eminently possible.

Continue reading “Caterpillar-Like Soft Robot With Distributed Programmable Thermal Actuation”

Single Flex PCB Folds Into A Four-Wheel Rover, Complete With Motors

You’ve got to hand it to [Carl Bugeja] — he comes up with some of the most interesting electromechanical designs we’ve seen. His latest project is right up there, too: a single PCB that folds up into a four-wheel motorized rover.

The key to [Carl]’s design lies with his PCB brushless motors, which he has been refining since we first spotted them back in 2018. The idea is to use traces on the PCB for the stator coils to drive a 3D printed rotor containing tiny magnets. They work surprisingly well, even if they don’t generate a huge amount of torque. [Carl]’s flexible PCB design, which incorporates metal stiffeners, is a bit like an unfolded cardboard box, with two pairs of motor coils on each of the side panels. This leaves the other surfaces available for all the electronics, with includes a PIC, a driver chip, and a Hall sensor for each motor, an IMU and proximity sensor for navigation, and an ESP32 to run the show.

With machined aluminum rotors and TPU tires mounted to the folded-up chassis, it was off to the races, albeit slowly. The lack of torque from the motors and the light weight of the rover, along with some unwanted friction due to ill-fitting joints, added up to slow progress, especially on anything other than a dead flat surface. But with some tweaking, [Carl] was able to get the buggy working well enough to call this one a win. Check out the build and testing in the video below.

Knowing [Carl], this isn’t the last we’ll see of the foldable rover. After all, he stuck with his two-wheel PCB motor design and eventually got that running pretty well. We’ll be keeping an eye out for progress on this one.

Continue reading “Single Flex PCB Folds Into A Four-Wheel Rover, Complete With Motors”

Retro Gadgets: Nintendo R.O.B Wanted To Be Your Friend

Too busy playing video games to have a social life? No worries. In 1985, Nintendo introduced R.O.B. — otherwise known as the Robotic Operating Buddy. It was made to play Nintendo with you. In Japan, apparently, it was the Family Computer Robot. We suppose ROB isn’t a very Japanese name. The robot was in response to the video game market crash of 1983 and was meant to keep the new Nintendo Entertainment System (NES) from being classified as a video game, which would have been a death sentence at the time of its release.

Since you might not have heard of R.O.B., you can probably guess it didn’t work out very well. In fact, the whole thing tanked in two years and resulted in only two games.

Continue reading “Retro Gadgets: Nintendo R.O.B Wanted To Be Your Friend”

Does Programming A Robot With ChatGPT Work At All?

ChatGPT has been put to all manner of silly uses since it first became available online. [Engineering After Hours] decided to see if its coding skills were any chop, and put it to work programming a circular saw. Pun intended.

The aim was to build a line following robot armed with a circular saw to handle lawn edging tasks.  The circular saw itself consists of a motor with a blade on it, and precisely no safety features. It’s mounted on the front of a small RC car with a rack and pinion to control its position. [Engineering After Hours] has some sage advice in this area: don’t try this at home.

ChatGPT was not only able to give advice on what parts to use, it was able to tell [Engineering After Hours] on how to hook everything up to an Arduino and even write the code. The AI language model even recommended a PID loop to control the position of the circular saw. Initial tests were messy, but some refinement got things impressively functional.

As a line following robot, the performance is pretty crummy. However, as a robot programmed by an AI, it does pretty okay. Obviously, it’s hard to say how much help the AI had, and how many corrections [Engineering After Hours] had to make to the code to get everything working. But the fact that this kind of project is even possible shows us just how far AI has really come.

Continue reading “Does Programming A Robot With ChatGPT Work At All?”

Robot Collects Ping Pong Balls For You

If you’ve ever played ping pong, table tennis, or beer pong, you know that it’s a struggle to hang on to the balls. [MaximeMonsieur] has designed a robot to handle picking them up so you don’t have to.

The robot is specifically designed to pick up ultra-light ping pong balls. To that end, it has a large spinning paddle that simply wafts the balls into its collector basket at the rear. The robot gets around with a simple two-motor drive system, relying on skid-steering with a castor wheel at the rear. An Arduino Uno runs the show, and navigates the robot around with the aid of ultrasonic sensors to avoid crashing into walls.

Overall, the robot shows the benefits of designing for a specific purpose. Such a design would likely be far less successful with other types of heavier balls, but for ping pong balls, the spinning paddle collector works great. We can imagine the robot being put to good use between sets to pick up all the lost balls around a table tennis court.

We’ve seen other ball collecting robots before, too.

Continue reading “Robot Collects Ping Pong Balls For You”

A man sits in a chair atop a hexagonal platform. From the platform there are six hydraulically-actuated legs supporting the hexapod above a grassy field. The field is filled with fog, giving the shot a mysterious, otherworldly look.

Megahex Will Give You Robo-Arachnophobia

Some projects start with a relatively simple idea that quickly turns into a bit of a nightmare when you get to the actual implementation. [Hacksmith Industries] found this to be the case when they decided to build a giant rideable hexapod, Megahex. [YouTube]

After seeing a video of a small excavator that could move itself small distances with its bucket, the team thought they could simply weld six of them together and hook them to a controller. What started as a three month project quickly spiraled into a year and a half of incremental improvements that gave them just enough hope to keep going forward. Given how many parts had to be swapped out before they got the mech walking, one might be tempted to call this Theseus’ Hexapod.

Despite all the issues getting to the final product, the Megahex is an impressive build. Forward motion and rotation on something with legs this massive is a truly impressive feat. Does the machine last long in this workable, epic state? Spoilers: no. But, the crew learned a lot and sometimes that’s still a good outcome from a project.

If you’re looking for more hexapod fun, checkout Stompy, another rideable hexapod, or Megapod, a significantly smaller 3D-printed machine.

Continue reading “Megahex Will Give You Robo-Arachnophobia”

Your Next Airport Meal May Be Delivered By Robot

Robot delivery has long been touted as a game-changing technology of the future. However, it still hasn’t cracked the big time. Drones still aren’t airdropping packages into our gutters by accident, nor are our pizzas brought to us via self-driving cars.

That’s not to say that able minds aren’t working on the problem. In one case, a group of engineers are working ton a robot that will handle the crucial duty of delivering food to hungry flyers at the airport.

Continue reading “Your Next Airport Meal May Be Delivered By Robot”