SparkFun Stencil And Solder Paste Class Notes

stencil

Hobby electronics manufacturer SparkFun has started offering various classes at their Boulder, CO facility. [Landon] has been attending as many as possible and posted about his experience during their Stencil and Solder Paste class. Solder paste is used when manufacturing boards with a reflow oven. He took quite a few pictures of the process and posted notes and audio. He says it’s definitely something you’d have to learn hands-on, but his numerous photos give you an idea of what’s involved. Below, you can watch a video of the paste clean-up pass and stencil removal.

Continue reading “SparkFun Stencil And Solder Paste Class Notes”

SparkFun Releases RGB Button Controller

rgb_button

SparkFun has been selling button pad parts for some time and we used them in our RGB door lock project. A excellent part, but you needed to implement your own interface to use the boards. SparkFun has just released two additional versions to make it easier on builders. The first is their Button Pad Controller USB. It has a 4×4 grid of buttons lit by RGB LEDs and a USB interface. This board can be expanded using the Button Pad Controller SPI. The SPI bus means it should be easy to add the button pad to embedded projects. This newest release puts you much closer to building your own RGB monome clone or other custom controller than ever before. The unit pictured above is their own project and they have no plans on selling anything like it.

A History Of SparkFun Prototypes

sparkfuntoys

If you haven’t checked out SparkFun Electronics’ prototype collection yet, you’re missing out. They unearthed many of their old prototypes and published them to show what kind of mistakes could be made. You’ll see plenty of errors and get hints on what to look for while developing your own hardware. This pairs well with their Design for Manufacture post. Along with the pile of broken board iterations, they also walk through how the company developed. Finally, they specifically cover the individual iterations of the BlueSMiRF.

One of the interesting modules in the gallery that never saw full release was the SparkFun Toys line pictured above. The individual units used the standoffs as the power and data bus. The four posts were arranged so they could only be connected in one orientation: power, ground, TX, and RX. It’s an interesting idea that seems like it might be worth exploring further. SparkFun says that it worked fine, but didn’t feel they had the resources to market it to the intended audience.

Working With Relays

relay

SparkFun’s latest tutorial shows you how to work with relays. A relay is an electrically operated switch. In this case, they’re using it to switch a 120V AC outlet. The article carries the standard warnings about how not to kill yourself with AC (plus some non sequitor linking throughout). As an extra precaution, they chose a GFI outlet. You probably know how a relay works, but it’s worth seeing how they implemented it. They use a transistor to prevent overloading the microcontroller’s GPIO pin. The control pin is pulled to ground to keep the relay off. A diode is placed across the relay coil to manage the power flow when it discharges. An indicator LED is included to show when the relay closes. This is a great foundation for an automation project, or maybe you just want to terrorize your cat.

Alarm Clock Automated Blinds

alarm

[Anupam Pathak] knows how jarring it can be to wake up to a traditional alarm clock. He decided to hack an alarm clock so that it would open the shades in his room to allow in natural light. He found the pin that went high when the alarm was triggered and used that to signal an ATtiny45. The microcontroller activates a servo connected directly to the blinds. He has switches on the side of the clock to manually control the blinds and to cut power to the audible alarm. Video embedded after the break. Continue reading “Alarm Clock Automated Blinds”

Kill A Watt Teardown

killawatt

Come on, folks. If we keep tearing apart everything that’s handed to us, we’ll never get nice things. SparkFun got their mitts on two Kill A Watts and proceeded to plug them into everything and then dismantled them to see how they work. The Kill A Watt keeps track of how much power is used over time. The largest load they found was their soda machine using 500W (should probably add a motion sensor to that). They plugged a meter on either side of a UPS and found out that it uses 5W just to charge. On the inside of the meter, there isn’t anything too substantial. One unlabeled IC runs the whole show.

Design For Manufacture

sparkfun

SparkFun has posted an excellent guide to the many different issues you could run into when you finally decide to get a circuit board professionally produced. We assume that most of you aren’t running a professional design firm and will appreciate these tips gleaned from years of experience. They provided a rule list, Eagle DRC, and CAM file to help you get it right the first time. The end goal is designing a board that won’t be prone to manufacturing errors. The tutorial starts by covering trace width and spacing. They recommend avoiding anything less than 10mil traces with 10mil spacing. For planes, they increase the isolation to 12mil to avoid the planes pouring onto a trace. They also talk about annular rings, tenting, labeling, and generating the appropriate gerber and drill files. SparkFun isn’t completely infallible though, and manages to produce a coaster from time to time.

SparkFun naturally followed up this strict tutorial with a guide to unorthodox header hole placement. If you want to learn more about Eagle, have a look at [Ian]’s overview of Eagle 5 and Ruin & Wesen’s layout videos.