Scratch-Built Rolling Tool Cabinet Is A Metalworking Skill-Builder

Yes, rolling tool cabinets in every conceivable shape, size, arrangement of drawers, and even color are readily available commercially, and you probably shouldn’t build your own. But as [Bob] from “Making Stuff” points out, where’s the fun in that?

Still, we can think of plenty of reasons to make your own rolling tool cabinets from scratch. Aside from the obvious benefits of practicing your metalworking skills and putting your tools to good use, rolling your own means you can get exactly what you want. Almost every tool cabinet we’ve purchased has ended up being just a bit sub-optimal in some way — too wide for the available space, or perhaps with drawers a touch too shallow to fit that one oddball tool. Being able to create your own cabinet means you can hit the specs exactly, and as [Bob] shows, it’s not even that hard if you have the right tools.

The build starts on [Bob]’s CNC plasma cutter, a shop-built machine that’s seen several upgrades over the years. The plasma cutter makes quick work of cutting the drawer blanks from sheet steel, complete with slots to make forming the sheets into drawers easy. The frame of the cabinet is steel tubing, which is welded up and filled in with more sheet steel. Full-extension ball-bearing slides are added to the sides to support the drawers; we have to admit that welding what appears to be zinc-coated steel makes us nervous, but we assume [Bob] took precautions against the potential for toxic fumes.

The video below shows the whole build process and shows off the very sharp-looking final product. It also puts us very much in the mood to build our own plasma cutter.

Continue reading “Scratch-Built Rolling Tool Cabinet Is A Metalworking Skill-Builder”

[Ben Eater]’s Breadboarding Tips

A solderless breadboard is a place where ideas go to become real for the first time. Usually, this is a somewhat messy affair, with random jumpers flying all about the place, connecting components that can be quickly swapped to zero in on the right values, or to quickly change the circuit topology. Breadboards aren’t the place to make circuit artwork.

That is, however, not always the case, and we’ve seen more than a few examples from [Ben Eater] on breadboarding that approaches the circuit sculpture level of craftsmanship. And like any good craftsman, [Ben] has shared some of his breadboarding tips and tricks in a new video. Starting with a simple 555 blinkenlight project that’s wired up in the traditional anything-goes fashion, [Ben] walks us through his process for making a more presentation-worthy version.

His tools are high-quality but simple, with the wire strippers being the most crucial to good results. Surprisingly, [Ben] relies most heavily on the simple “scissors-style” strippers for their versatility, rather than the complicated semi-automatic tools. We found that to be the biggest take-home from the video, as well as the results of practice. [Ben] has done tons of this type of breadboarding before, which means when he “eyeballs” stripping 0.3 inches of insulation, he can do it down to a ten-thousandth precision.

Granted, there’s not much new here, but watching this video is a little like watching [Bob Ross] paint — relaxing and strangely compelling at the same time. You can get more of the same with pretty much any of his videos that we’ve covered, like this 6502 breadboard computer build. We’ve also seen [Eater]-inspired builds that are pretty impressive, like this full-8-bit breadboard computer.

Continue reading “[Ben Eater]’s Breadboarding Tips”

Railroad Rail Transformed Into Blacksmith’s Anvil With The Simplest Of Tools

One of the biggest challenges facing the aspiring blacksmith is procuring the tools of the trade. And that means tackling the unenviable task of finding a decent anvil. Sure, one can buy an ASO — anvil-shaped object — at Harbor Freight, but a real anvil is much harder to come by. So perhaps the beginner smith’s first build should be this railroad rail to anvil conversion.

Repurposing sections of rail into anvils is hardly a new game, but [The Other Finnish Guy]’s build shows us just how little is needed in terms of specialized tooling to pull this off. Other than a file, the bulk of the work is done by angle grinders, which are used to cut off the curved crown of the rail section, cut the shape of the heel, and rough out the horn. Removing that much metal will not be a walk in the park, so patience — and a steady supply of cutting wheels and sanding discs — is surely required. But with time and skill, the anvil hidden inside the rail can be revealed and put to use.

We have questions about the final result, like its lack of a hardy hole and the fact that the face isn’t hardened. We wonder if some kind of induction heating could be used to solve the latter problem, or if perhaps a hardened plate could be welded into the top to make a composite anvil. Still, any anvil is better than no anvil. More on the anatomy and physiology of these tools can be had in [Jenny List]’s article on anvils, and her whole excellent series on blacksmithing is highly recommended. [Jenny]’s not the only smith we have on staff, though — [Bil Herd] has been known to smite a bit too.

Continue reading “Railroad Rail Transformed Into Blacksmith’s Anvil With The Simplest Of Tools”

Building A Tiny Finger Plane For Detailed Work

A plane is a tool familiar to all woodworkers, used to shape a workpiece by hand by shaving away material. Regular planes are two-handed tools available at all good hardware stores. For finer work, a finger plane can be useful, though harder to find. Thankfully, [Daniel] put together a video showing how to make your own.

[Daniel]’s build relies on stabilized wood, useful for its density and consistent quality, though other woods work too. A 6″ pen blank is enough to make a pair of matching finger planes. A block and two side panels are cut out from the material, with attention paid to making sure everything remains square for easy assembly. The parts are glued together with a block set at the desired cutting angle for the plane. With the assembly then tidied up on the bandsaw and sander, [Daniel] installs the cutting blade. This can be made from a larger standard plane blade, or a cutdown chisel can be pressed into service. The blade is held in place with a wooden wedge beneath a metal pin. The pin itself is crafted from an old drill bit, cut down to size.

It’s a useful tool for doing fine plane work, for which a full-size tool would be ungainly. We can imagine it proving particularly useful in producing accurate scale models in smaller sizes. If you’re big into woodworking, consider giving your tools a good sharpen on the cheap, too. Video after the break.

Continue reading “Building A Tiny Finger Plane For Detailed Work”

Building A Workshop Crane From Scratch

Buying tools is all well and good, but it doesn’t suit the ethos of Youtube channel [Workshop From Scratch]. Building what you need is much more the go, and that’s demonstrated ably with this home-built electric workshop crane.

The crane is put together in a straightforward manner using basic steelworking techniques. Plates and bars are machined with a drill press, bandsaw and grinder, though we could imagine you could use hand tools if you were so inclined. An ATV winch is pressed into service to do the heavy lifting, powered by a set of 12V lead acid batteries placed in the base. This design choice does double duty as both a mobile power supply for the crane, and acts as a counterweight in the base.

The final result looks sharp in its orange paint finish, and does a good job of moving heavy equipment around the workshop. The legs are reconfigurable, so that even very heavy loads can be lifted with appropriate counterweight placed on the back. It’s a significant upgrade on the earlier version we featured last year, which was hydraulic in operation. Video after the break.

Continue reading “Building A Workshop Crane From Scratch”

Ask Hackaday: What Tools Do You Really Need For A Life On The Road?

How do you dispose of an old hard drive? Inventive stories about heat and flame or industrial shredders will no doubt appear in the comments, but for me I just dismantle them and throw the various parts into the relevant scrap bins at my hackerspace. The magnets end up stuck to a metal door frame, and I’m good to go. So a week or so ago when I had a few ancient drives from the 1990s to deal with, I sat down only to find my set of Torx and Allen drivers was missing. I was back to square one.

What A Missing Tool Tells You About Necessities

Clint Eastwood always seemed to have just what he needed, why can I never manage it! Produzioni Europee Associati, Public domain.
Clint Eastwood always seemed to have just what he needed, why can I never manage it! Produzioni Europee Associati, Public domain.

Life deals an odd hand, sometimes. One never expects to find oneself homeless and sofa-surfing, nearly all possessions in a container on a farm somewhere. But here I am, and somewhere in one of those huge blue plastic removal crates is my driver set, alongside the other detritus of an engineer scribe’s existence. It’s all very well to become a digital nomad with laptop and hotspot when it comes to writing, but what has the experience taught me about doing the same as a solderer of fortune when it comes to hardware? My bench takes up several large removal crates and there is little chance of my carrying that much stuff around with me, so what makes the cut? Evidently not the tools for hard drive evisceration, so I had to borrow the set of a hackerspace friend to get the job done. Continue reading “Ask Hackaday: What Tools Do You Really Need For A Life On The Road?”

This DIY Drill Press Is Very Well Executed

Plenty of projects we see here could easily be purchased in some form or other. Robot arms, home automation, drones, and even some software can all be had with a quick internet search, to be sure. But there’s no fun in simply buying something when it can be built instead. The same goes for tools as well, and this homemade drill press from [ericinventor] shows that it’s not only possible to build your own tools rather than buy them, but often it’s cheaper as well.

This mini drill press has every feature we could think of needing in a tool like this. It uses off-the-shelf components including the motor and linear bearing carriage (which was actually salvaged from the Z-axis of a CNC machine). The chassis was built from stock aluminum and bolted together, making sure to keep everything square so that the drill press is as precise as possible. The movement is controlled from a set of 3D printed gears which are turned by hand.

The drill press is capable of drilling holes in most materials, including metal, and although small it would be great for precision work. [ericinventor] notes that it’s not necessary to use a separate motor, and that it’s possible to use this build with a Dremel tool if one is already available to you. Either way, it’s a handy tool to have around the shop, and with only a few modifications it might be usable as a mill as well.

Continue reading “This DIY Drill Press Is Very Well Executed”