Peachy Printer Collapses, Investor Built A House Instead Of A Printer

The Peachy Printer, originally a crowdfunding campaign for a $100 stereolithography 3D printer, is now dead in the water.[Rylan Grayston], the creator of the Peachy Printer, announced that [David Boe] — investor, 50% owner of Peachy Printer, and business partner — had stolen over $300,000 in Kickstarter campaign funds. According to [Rylan], this money was used to build a house.

An example print from the Peachy Printer Kickstarter campaign
An example print from the Peachy Printer Kickstarter campaign

When the Peachy Printer was announced on Kickstarter, it was, by any measure, a game changing product. Unlike other stereolithographic printers like the Form 1 and DLP projector kit printers, the Peachy was cheap. It was also absurdly clever. Instead of using a stepper motor to raise a print out of a vat of resin, the Peachy Printer floated the resin on a vat of salt water. By slowly dripping salt water into this vat, the level of the resin rose up, allowing the galvanometers and laser diode to print the next layer of a 3D object. In our first coverage of the Peachy Printer, everyone was agog at how simple this printer was. It wasn’t a high-resolution printer, but it was a 3D resin printer that only cost $100. Even today, nearly three years after the launch of the Kickstarter campaign, there’s nothing like it on the market.

For the last two years, [Rylan] appeared to have the Peachy Printer in a pseudo-stealth mode. Whispers of the Peachy Printer circled around 3D printer forums, with very little information coming from [Rylan]. For the last year, the Peachy Printer appeared to be just another failed crowdfunded 3D printer. Either [Rylan] didn’t have the engineering chops to take a novel device to market, there were problems with suppliers, or [Rylan] just couldn’t get the product out the door.

In the update published to the Kickstarter campaign, the reason for the failure of Peachy Printer to deliver becomes apparent. The Kickstarter campaign was set up to deliver the funds received – $587,435.73 – directly into [David Boe]’s account. Thirty days after the funds were received, [David] had spent over $165,000. In just over three months, all the Kickstarter funds, save for $200,000 transferred into the Peachy Printer corporate account, were spent by [David].

With no funds to complete the development of the Peachy Printer, [Rylan] looked into alternative means of keeping the company afloat until Kickstarter rewards had shipped. Peachy Printer received two government grants totalling $90,000 and $135,000. In March of 2015, one of [Rylan]’s family members loaned $50,000 to Peachy Printer. A plan to finance the delivery of Kickstarter rewards with new sales – a plan that is usually looked down upon by Kickstarter backers – was impossible, as cost and time required of certifying the laser in the Peachy Printer would have put the company in the red.

Right now, [Rylan] and the Peachy Printer are pursuing repayment from [David Boe], on the basis that Kickstarter reward money is still tied up in the construction of a house. Once the house is complete, the bank will disburse funds from the construction mortgage, and funds can then be transferred from [David] to Peachy Printer.

In all, the Peachy Printer is a mess, and has been since the Kickstarter funds were disbursed to [David]. There is – potentially – a way out of this situation that gets Peachy Printers into the hands of all the Kickstarter backers if the mortgage construction funds come through and production resumes, but that’s a lot of ‘ifs’. Failed Kickstarter projects for 3D printers are nothing new, but [Rylan]’s experience with the Peachy Printer is by far the most well-documented failure of a crowdfunding project we’ve ever seen.

A $99 Smartphone Powered 3D Printer?

What if we could reduce the cost of a photopolymer resin-based 3D printer by taking out the most expensive components — and replacing it with something we already have? A smartphone. That’s exactly what OLO hopes to do.

A resin-based 3D printer, at least on the mechanical side of things, is quite simple. It’s just a z-axis really. Which means if you can use the processing power and the high-resolution screen of your smart phone then you’ve just eliminated 90% of the costs involved with the manufacturing of a resin-based 3D printer. There are a ton of designs out there that use DLP projectors to do just this. (And there have been open-source designs since at least 2012.)

The question is, does it work with a cellphone’s relatively weak light source?

Continue reading “A $99 Smartphone Powered 3D Printer?”

Bunnie’s Guide to Shenzhen Electronics

[Bunnie Huang] is now officially the person who wrote the book on electronics manufacturing in Shenzhen, China. His Crowd Supply campaign for The Essential Guide to Electronics in Shenzhen has blown way past the initial goal. [Bunnie] is the first person who comes to mind for anyone needing help getting their electronics built in the region.

The books is meant as a travel companion. Hackaday was in China last June and toured the markets of Hua Qiang Bei. They are incredibly overwhelming, but people are very nice, willing to help, and none of them speak English. [Bunnie’s] approach is pages with squares you can point to in order to express your meaning. Standing at the capacitor stall? There’s a page for that. Gawking at a booth packed full of LEDs and need them in reels instead of tape? That’s in the book too. Even better, this isn’t a one-way thing. You should be able to understand well enough what they vendor is trying to convey as they point at the pages to answer your questions. This is certainly better than our method of trying to find pictures of addresses and Chinese characters on our phones. Everything is at the ready.

It doesn’t end there. The images of the book’s table of contents shows that you’ll get help with getting into the country, getting around once you’re there, and making the deal when you do find what you need. If you’re ever going to make the trip to Shenzhen, this is the first thing you should put in your backpack.

Since you’re already in the mood to purchase something made of paper, we think you’ll be interested you in this gorgeous Hackaday Omnibus Vol 02. It’s 128 pages of the best original content published on Hackaday over the past year, including the stunning artwork of Joe Kim.

Continue reading “Bunnie’s Guide to Shenzhen Electronics”

Emulating and Cloning Smart Cards

A few years ago, we saw a project from a few researchers in Germany who built a device to clone contactless smart cards. These contactless smart cards can be found in everything from subway cards to passports, and a tool to investigate and emulate these cards has exceptionally interesting implications. [David] and [Tino], the researchers behind the first iteration of this hardware have been working on an improved version for a few years, and they’re finally ready to release it. They’re behind a Kickstarter campaign for the ChameleonMini, a device for NFC security analysis that can also clone and emulate contactless cards.

While the original Chameleon smart card emulator could handle many of the contactless smart cards you could throw at it, there at a lot of different contactless protocols. The new card can emulate just about every contactless card that operates on 13.56 MHz.

The board itself is mostly a PCB antenna, with the electronics based on an ATXMega128A4U microcontroller. This micro has AES and DES encryption engines, meaning if your contactless card has encryption and you have the cryptographic key, you can emulate that card with this device. They’re also making a more expensive version that also has a built-in reader that makes the ChameleonMini a one-stop card cloning tool.

The Most Brilliant Use of Crowdfunding Yet: Medical Research

Since the rise of Kickstarter and Indiegogo, the world has been blessed with $100 resin-based 3D printers, Video game consoles built on Android, quadcopters that follow you around, and thousands of other projects that either haven’t lived up to expectations or simply disappeared into the ether. The idea of crowdfunding is a very powerful one: it’s the ability for thousands of people to chip in a few bucks for something they think is valuable. It’s a direct democracy for scientific funding. It’s the potential for people to pool their money, give it to someone capable, and create something really great. The reality of crowdfunding isn’t producing the best humanity has to offer. Right now, the top five crowdfunding campaigns ever are two video games, a beer cooler, a wristwatch with an e-ink screen, and something to do with Bitcoin. You will never go broke underestimating people.

[Dr. Todd Rider] wants to change this. He might have developed a way to cure nearly all viral diseases in humans, but he can’t find the funding for the research to back up his claims. He’s turned to IndieGoGo with an audacious plan: get normal people, and not NIH grants, to pay for the research.

The research [Dr. Rider] has developed is called the DRACO, the Double-stranded RNA Activated Caspase Oligomerizer. It works by relying on the singular difference between healthy cells and infected cells. Infected cells contain long chains viral double-stranded RNA. The DRACOs attach themselves to these long strands of RNA and cause those cells to commit suicide. The research behind the DRACO was published in 2011, and since then [Dr. Rider] has already received funding from more traditional sources, but right now the project is stuck in the ‘funding valley of death’. It’s easy to get funding for early research, but to get the millions of dollars for clinical trials it takes real results – showing efficacy, and proving to pharmaceutical companies or VCs that the drug will make money.

So far, results are promising, but far from the cure for HIV and the common cold the DRACO promises to be. [Dr. Rider] has performed a few tests on cell cultures and mice, and the DRACOs have been effective in combating everything from the common cold, to the flu to dengue hemorrhagic fever.

The IndieGoGo campaign is flexible funding, meaning all the money raised will go towards research even if the funding goal is not met. Right now, just over $50,000 has been raised of a $100,000 goal. That $100k goal is just the first step; [Dr. Rider] thinks he’ll need about $2 Million to test DRACOs against more viruses and hopefully show enough progress to get additional traditional funding. That $2 Million is a little less than what Solar Roadways raised, meaning no matter what [Dr. Rider] will make one important medical discovery: people are very, very, very dumb.

Continue reading “The Most Brilliant Use of Crowdfunding Yet: Medical Research”

Measuring Capacitance Against Voltage

Ceramic capacitors are pretty much the pixie dust of the electronics world. If you sprinkle enough of them on a circuit, everything will work. These ceramic capacitors aren’t the newest and latest technology, though: you can find them in radios from the 1930s, and they have one annoying property: their capacitance changes in relation to voltage.

This is a problem if you’re relying on ceramic caps in an RC filter or a power supply. What you need is a device that will graph capacitance against voltage, and [limpkin] is here to show you how to do it.

Of course capacitance is usually measured by timing how long it takes to charge and discharge a cap through an RC oscillator. This requires at least one known value – in this case a 0.1% resistor – by measuring the time it takes for this circuit to oscillate, an unknown capacitance can be calculated.

That’s all well and good, but how do you measure capacitance against a bias voltage? EDN comes to save the day with a simple circuit built around an op-amp. This op-amp is just a comparator, with the rest of the circuit providing a voltage directly proportional to the percentage of charge in the capacitor.

This little project is something [limpkin] has turned into a Kickstarter, and it’s something we’ve seen before. That said, measuring capacitance against a voltage isn’t something any ‘ol meter can do, and we’re glad [limpkin] could put together an easy to use tool that measures this phenomenon.

Windows 10 On A Tiny Board

Over the past few months, a number of companies and designers have started picking up the newest Intel SoCs. Intel has to kill ARM somehow, right? The latest of these single board x86 computers is the Lattepanda. It’s a tiny board that can run everything a 5-year-old desktop computer can run, including a full version of Windows 10.

This isn’t the first time we’ve seen a tiny x86 board in recent months. Last October, an x86 board that takes design cues from the Raspberry Pi 2 hit Kickstarter. These are proper PCs, with the ability to run Windows 10, Linux, and just about every other environment under the sun.

The specs for the Lattepanda include a quad-core Cherry Trail running at 1.8GHz. the RAM is either 2GB or 4GB depending on configuration, and 32GB of eMMC Flash. Peripherals include USB 3.0, Ethernet, WiFi, Bluetooth, and integrated graphics supporting either HDMI or a DSI connector.

But of course a computer is just a computer, and you can’t sell a machine that only runs Skype to the ‘maker’ market. The Lattepanda also includes an ATMega32u4 as a coprocessor, giving this board ‘Arduino functionality’. In my day we walked uphill both ways to get a parallel port, but I digress.

While these tiny x86 boards might not be available in a year’s time, and the companies behind them may fall off the face of the planet, the introduction of these devices portends a great war over the horizon. Intel wants the low-power SoC market, a space until now reserved entirely for ARM-based devices.