Crowdfunding Follies: $100 To Disprove Isaac Newton

Are satellites fake? Nobody knows, because no one has done an experiment to determine if rocket engines will produce thrust in a vacuum. At least that’s what this Kickstarter says, and it’s asking for $100 to test multiple types of rocket engines in an enclosed, evacuated chamber.

Anyone who has thought about this problem for half a second will tell you yes, rocket engines will work in a vacuum. It’s an application of Newton’s Third Law of Motion; if you explode fuel and dump it out the back of a rocket, the rocket will go forward. Rocket engines don’t push against air.

Strap in, because this one gets better. In a video linked to from the Kickstarter Campaign, satellites do not exist. This is because gas molecules in the thermosphere can reach 2,500 °C, hot enough to melt the metal satellites are made of. Never mind that the 2,500 °C figure is only for individual gas molecules; the atmosphere at these altitudes is so rarefied, there isn’t much contact with matter. Oh, second point: have you ever realized that a Google image search of the word ‘satellite’ mostly shows illustrations and renders? It’s not because to take a picture of a satellite in orbit would require two satellites flying in formation; no, it must be because satellites don’t exist. It gets better from there.

Kickstarting Even More Router-Based Dev Boards

The latest and greatest thing makers and IoT solutions is apparently router hacking. While most Hackaday readers lived through this interesting phase where Linksys routers were used to connect sensors and other such digital bits and bobs to the Internet a few years ago, SOCs have improved, and now there are router-based dev boards.

The latest is the Onion Omega, an exceptionally tiny board just under two inches square. Onboard is an Atheros AR9331 chipset – the same found in a number of cheap WiFi routers – attached to 32 pins breaking out GPIOs, SPI, I2C, and USB. With WiFi and Ethernet, this is a board designed to connect sensors, motors, actuators, and devices to the Internet.

This is not the only recent router-based dev board to make it to the crowdfunding sites. A week or so ago, the Domino hit Kickstarter, featuring the same AR9331 chipset found in the Onion Omega. The Onion does have a few things going for it – cloud integration, a web-based console, and an app store that make the Onion vastly more useful for the ‘maker’ market. The Domino has a boatload of pins available, and competition is always good, right?

Kickstarting Router-Based Development Boards

[Squonk] is rather famous in the world of repurposed routers, having reverse engineered the TL-WR703N wireless router from TP-Link a few years ago. With that knowledge, he’s developed an open platform for Things on the Internet called Domino. It’s pretty much exactly what you would get by cracking open a router bought on AliBaba, only in a much more convenient package with many more pins broken out.

The Domino builds on [Squonk]’s reverse engineering efforts of the TP-Link TL-WR703N wireless router, the router that has stolen the thunder from the Linksys WRT54G for all those sweet, sweet, embedded hacks. Both the 703N and the Domino are built around the Atheros AR9331. While the router version of this chipset only breaks out a few GPIOs and other interesting pins, the Domino breaks out just about everything – GPIO, JTAG, I2S, UART, SPI, USB, and Ethernet can be found on the device.

The basic Domino can hopefully be had with a $25 pledge to the Kickstarter campaign. That’s a little less than the normal price for a WR-703N, and if you’re putting a router in a hat it might be worth your while. There are a few advanced versions that include an ATMega32u4 microcontroller, making it compatible with the Arduino Yun as well.

Advanced Not-Reading Technology

Yesterday, there was a Hackaday post for a Kickstarter campaign. Because we force everyone to read every Hackaday post, there were some complaints and suggestions that we flag posts about Kickstarter campaigns. The most obvious solution to this problem of forcing people to read what they don’t want to read would be a UserScript or browser extension that automatically removes posts with objectionable tags.

It took 12 hours for [Daniel Ward] to lift you up to salvation, ending the inexorable toil you have all suffered under the thumb of idiotic and incompetent Hackaday editors.

[Daniel] wrote a UserScript for GreaseMonkey or TamperMonkey that looks at the tags for each and every Hackaday post. If a tag matches, “crowd-funding”, “crowdfunding”, or “kickstarter”, the post is removed from your browser.

It’s an astonishing advancement in state of the art, “not reading what you don’t want to read” technology. Bards and troubadours will sing of this day for years. Philosophers and theologians are citing this as evidence of something they’re calling, ‘free will.’ We don’t know who [Will] is, but at least he’s free now.

If that’s not enough, [RoGeorge] came up with an astonishing twist on this life-changing technology. By adding, ‘Arduino’ to the blacklisted tags, all posts tagged ‘Arduino’ are also removed. This can, of course, be extended to any tag. Imagine; a world where you don’t have to read what you don’t want to read. A futuristic utopia. Astounding.

Ask Hackaday: The Latest Advances In Perfboard

It’s no secret the Hackaday tip line gets a lot of email from Kickstarter campaigns and PR firms managing Kickstarter campaigns. Most of these are terrible products. Want a five-pound battery that can’t be recharged? Yeah, stuff like that.

Every once in a while, we come across a tip that’s a completely original idea. There’s a balance between ingenuity and practicality with these ideas, and I can’t figure out where this one sits. It’s a Kickstarter for perfboard, yes, but not like any perfboard you’ve ever seen.

Busboard, or solderable breadboard
Busboard, or solderable breadboard

Before we dig into this, let’s get some definitions straight. Perfboard is a sheet with holes drilled on a 0.1″ grid. The holes are plated on both sides, and each hole is an individual electrical node. Veroboard, or stripboard is a bunch of holes on a 0.1″ grid. These holes are also plated, but all the holes in a column are a single electrical node. You can cut the tracks between holes, but the basic idea here is to reduce the number of wires needed to connect components. Busboard, seen left, is a continuation of Veroboard, and is laid out like a solderless breadboard.

And so we come to the new invention, Perf+, the perfboard reinvented. This perfboard again is a series of plated holes on a 0.1″ grid. Alongside these holes is a plated bus. This bus does not connect to any hole; instead, a little bit of solder is used to connect it to holes on the same row or column. “Selective Veroboard,” you could call it.

Now for the real trick: on one side of the board, the plated busses run vertically. On the other side of the board, the plated busses run horizontally. This means any two holes on the protoboard can be connected as one electrical node simply with a bit of solder.

If ever there was an idea you could point to and simultaneously say, “that’s clever” and “I have no idea how to use this,” there you go. I’m pretty sure this idea isn’t better than a piece of stripboard, but it is different. If you have any idea of how to used this new, strange, and otherworldly protoboard for something useful, put a note in the comments.

A Cellular Dev Kit With A Data Plan

After years of futzing around with 433 MHz radios and WiFi, we’re finally seeing a few dev boards that are focused on cellular radio modules. The Konekt Dash is the latest offering that puts a small u-blox SARA cellular module on a board with a small ARM Cortex M4 microcontroller for a complete cellular solution for any project you have in mind. Yes, until we get radios that make sense for an Internet of Things, this is the best you’re going to get.

If the Konekt sounds familiar, you’re right. A few months ago, Spark introduced the Electron, a cellular dev board based on the u-blox SARA-U260 module that includes a SIM with a 1MB of data a month. Practically, it’s not much different from the Konekt, but the Dash and Dash pro offer battery management and a battery connector, two power supplies, and encryption from the board to a server. There are slight differences for about the same price, but that’s what’s great about competition.

The Konekt Dash is now a few days in to a Kickstarter campaign that includes as rewards a board and a SIM with a six months to a year’s worth of data. There are a lot of things that can’t be done with WiFi, Bluetooth, or other radio modules, and if you have something like that in mind, you won’t do better than a Konekt or Spark Electron.

ChipWhisperer Hits Kickstarter

Even the most well designed crypto algorithms can be broken if someone is smart enough to connect an oscilloscope to a processor. Over the last 15 years or so, an entire domain of embedded security has cropped up around the techniques of power and side channel analysis. The tools are expensive and rare, but [Colin O’Flynn] and the ChipWhisperer are here to bring a new era of hardware security to the masses.

The ChipWhisperer was the second place winner of last year’s Hackaday Prize. It’s an interesting domain of security research, and something that was previously extremely expensive to study. If you’re looking for a general overview of what the ChipWhisperer does, you might want to check out when we bumped into [Colin] at DEFCON last year.

While the original goal of the ChipWhisperer was to bring the cost of the tools required for power and side channel analysis down to something a hackerspace or researcher could afford, this was still too expensive for a Kickstarter campaign. To that end, [Colin] designed the ChipWhisperer Lite, a cut-down version, but still something that does most of what the original could do.

There are two parts to the ChipWhisperer Lite – the main section contains a big microcontroller, a big FPGA, and a high gain, low noise amplifier. This is the core of the ChipWhisperer, and it’s where all the power analysis happens. The other part is a target board containing an XMega microcontroller. This is where you’ll run all your encryption algorithms, and where you’ll find out if they can be broken by power analysis. The main board and target board are held together by a break-away connection, so if you want to run a power analysis on another board, just snap the ChipWhisperer in half.

[Colin] is offering up a ChipWhisperer Lite for around $200 USD – far, far less than what these tools cost just a year ago. We’re looking forward to a successful campaign and all the neat findings people with this board will find.