SOAP: The Home Automation Router And Kickstarter Scam

SOAP

How would you like a 7″ tablet with a Quad-core ARM Cortex A9 processor, USB 3.0, 32 GB of storage, 802.11ac, four ports of Gigabit LAN, Bluetooth 4.0, NFC, SATA, HDMI, built-in Zigbee and RFID modules, a camera, speaker and microphone, all for $170? Sound too good to be true? That’s because it probably is. Meet SOAP, the home automation router with a touchscreen, that’s shaping up to be one of the largest scams Kickstarter has ever seen.

There have been a few threads scattered over the web going over some of the… “inconsistencies” about the SOAP kickstarter, mainly focusing on the possibility of fake Facebook likes and Twitter followers. There’s also the question of their development process: they started building a router with an Arduino, then moved on to a Raspberry Pi, a Beaglebone, Intel Atom-powered Minnowboard, the Gizmo Board, PandaBoard, and Wandboard. If you’re keeping track, that’s at least six completely different architectures used in their development iterations. Anyone who has ever tried to build something – not even build a product, mind you – will realize there’s something off here. This isn’t even considering a reasonably accurate BOM breakdown that puts the total cost of production at $131.

The most damning evidence comes from screenshots of the final board design. These pics have since been removed from the Kickstarter page, but they’re still available on the Google cache. The SOAP team claims they’re putting USB 3.0 ports on their board, but the pics clearly show only four pins on each of the USB ports. USB 3.0 requires nine pins. A closer inspection reveals these screenshots are from the files for Novena, [Bunnie Huang]‘s open source laptop.

[Read more...]

Dual Color Extruder With A Single Stepper

extruder

Once you have a 3D printer able to build a few objects in a single color, the next logical upgrade is a dual extruder. A dual extruder allows for multiple color prints, and by adding a dissolvable filament, the ability to print object that would otherwise be impossible. Fitting a dual extruder on an existing 3D printer presents a problem: simply by using a second stepper motor, you reduce the print area of your printer significantly. That’s the problem Dglass 3D aims to solve with their extruder. It’s a dual filament extruder that uses only one stepper motor and takes up less space than some other single filament extruders.

This isn’t the first time the guys at Dglass 3D have tried Kickstarting a dual filament extruder; last year we saw a very similar mechanism that used a single stepper motor to feed two filaments. This older model lacked retraction, though, meaning two colored prints would range somewhere between messy, inaccurate, to impossible.

The new extruder uses a servo to ‘latch’ the filament and drive it into the hot end. This means retraction of the filament is possible and from the sample prints with this extruder, the results look pretty good.

Below You’ll see a few video demos of the dual color/retraction extruder printing an object in black and white filaments at the same time. It’s very cool, and with the addition of a dissolvable filament means very complex objects can be printed very easily.

[Read more...]

A Digital Condom a Reality Thanks to Arduino

condom

[Bill Gates]‘ foundation is currently offering up a ton of prizes for anyone who can improve the condom. It’s a laudable goal, and somewhat difficult; one of the main reasons why male condoms aren’t used as often as they should is the,  “male perspective… that condoms decrease pleasure as compared to no condom.”

While most of the work inspired by the [Gates] foundation is work investigating a change in the geometry of the condom, [Firaz Peer] and [Andrew Quitmeyer] of Georgia Tech managed to solve this problem with an Arduino.

The basic idea of the Electric Eel – yes, that’s the name – is to deliver short electric impulses, “along the underside of the shaft for increased stimulation”. These impulses are delivered in response to different sensor inputs – in the video example (surprisingly safe for work) they’re using a force resistor wrapped around the chest for an electrical stimulation with every breath.

Although this is only a prototype, the hope is the conductors in the condom can eventually be implanted along the inside surface of a condom during manufacturing.

Video after the break.

[Read more...]

The Kickstarter Space Cannon

cannon

As far as space travel and Kickstarter is concerned, we’ve seen crowdfunding projects for satellites in low earth orbit, impacting the moon, and even a project for a suborbital rocket. This one, though, takes the cake.  It’s a gun designed to send very small payloads into space on a suborbital trajectory.

The gun itself is an 8-inch bore, 45-foot long monster of an artillery piece. While the simplest way of shooting something down the length of a barrel would be exploding something in the breech, [Richard] is doing something a little more interesting. He’s broken down the propellent charges so instead of one giant propelling a bullet down a barrel, the projectile is constantly accelerated with a number of smaller charges.

The goal of the Kickstarter is to send a small payload into a suborbital trajectory. Later developments will include putting a small rocket motor in the dart-shaped bullet to insert the payload into an orbit.

This isn’t the first time anyone has attempted to build a gun capable of shooting something into space. The US and Canada DOD built a gun that shot a 180 kg projectile to 180 km altitude. The lead engineer of this project, [Gerald Bull] then went on to work with [Saddam Hussein] to design a supergun that could launch satellites into orbit or shells into downtown Tel Aviv or Tehran. [Bull] was then assassinated by either the US, Israeli, Iranian, British, or Iraqi governments before the gun could be completed.

Two videos from the Kickstarter are below, with a few more details on the project’s webpage

[Read more...]

Help Save Nullspace Labs

Nullspace Labs

A few days ago, the folks at Nullspace Labs in downtown LA got a surprising memo: their building is going to be gutted in a month. With thirty days left, they need money to cover first and last months rent, and help with moving. We can imagine that moving a Hackerspace is no small feat, since they tend to accumulate tons of awesome stuff.

The Hackerspace has started a crowd funding campaign, and has posted a call for help. They are looking for money, new members, or help with moving. If you’ve never been, you can check out our tour of Nullspace Labs.

It’s tough deciding what Hackerspace news to cover. We can’t run individual features on every tip we get promoting Hackerspace events, developments, crowd funding campaigns, and calls for help. We’re featuring this one because we just visited them, they’re awesome, and they’ve also been the source for many great stories over the years, like craning in a laser cutter or developing a modular LED orb. So here’s a question for you: Should we be presenting more Hackerspace news that is perhaps only relevant at the local level? If you think we should, how would we present it? There’s the option of doing occasional links-post-like roundups. But if you have a better idea we’re all ears.

LIDAR With LEDs For Under $100

LIDAR

If you need some sort of distance sensor for your robot, drone, or other project, you have two options: a cheap ultrasonic sensor with limited range, or an expensive laser-based system that’s top of the line. LIDAR-Lite fills that gap by stuffing an entire LIDAR module onto a small board.

In traditional LIDAR systems, a laser is used to measure the time of flight for a light beam between the sensor and an object. The very accurate clock and laser module required for this system means LIDAR modules cost at least a few hundred dollars. LIDAR-Lite gets around these problems by blinking a LED with a ‘signature’ and looking for that signature’s return. This tech is packaged inside a SoC that reduces both the cost and size of a traditional laser-based LIDAR system.

As for the LIDAR-Lite specs, it can sense objects out to 40 meters with 5% 95% accuracy, communicates to any microcontroller over an I2C bus, and is small enough to fit inside any project.

Considering the existing solutions for distance measurement for robots and quadcopters, this sensor will certainly make for some very awesome projects.

Edit: One of the guys behind this posted a link to their spec sheet and a patent in the comments

$20 GPS/GLONASS/Beidou Receiver

navspark

Sticking a GPS module in a project has been a common occurrence for a while now, whether it be for a reverse geocache or for a drone telemetry system. These GPS modules are expensive, though, and they only listen in on GPS satellites – not the Russian GLONASS satellites or the Chinese Beidou satellites. NavSpark has the capability to listen to all these positioning systems, all while being an Arduino-compatible board that costs about $20.

Inside the NavSpark is a 32-bit microcontroller core (no, not ARM. LEON) with 1 MB of Flash 212kB of RAM, and a whole lot of horsepower. Tacked onto this core is a GPS unit that’s capable of listening in on GPS, GPS and GLONASS, or GPS and Beidou signals.

On paper, it’s an extremely impressive board for any application that needs any sort of global positioning and a powerful microcontroller. There’s also the option of using two of these boards and active antennas to capture carrier phase information, bringing the accuracy of this setup down to a few centimeters. Very cool, indeed.

Thanks [Steve] for sending this in.