Open Source GPU Released

GPLGPU

Nearly a year ago, an extremely interesting project hit Kickstarter: an open source GPU, written for an FPGA. For reasons that are obvious in retrospect, the GPL-GPU Kickstarter was not funded, but that doesn’t mean these developers don’t believe in what they’re doing. The first version of this open source graphics processor has now been released, giving anyone with an interest a look at what a late-90s era GPU looks like on the inside, If you’re cool enough, there’s also enough supporting documentation to build your own.

A quick note for the PC Master Race: this thing might run Quake eventually. It’s not a powerhouse. That said, [Bunnie] had a hard time finding an open source GPU for the Novena laptop, and the drivers for the VideoCore IV in the Raspi have only recently been open sourced. A completely open GPU simply doesn’t exist, and short of a few very, very limited thesis projects there hasn’t been anything like this before.

Right now, the GPL-GPU has 3D graphics acceleration working with VGA on a PCI bus. The plan is to update this late-90s setup to interfaces that make a little more sense, and add DVI and HDMI output. Not bad for a failed Kickstarter, right?

Reverse Engineering a GPS Watch to Upload Custom Firmware

 

Sometimes GPS watches are too good to be left with their stock firmware. [Renaud] opened his Kalenji 300 GPS watch, reverse engineered it in order to upload his own custom firmware.

The first step was to sniff the serial traffic between the PC and the microcontroller when upgrading firmware to understand the protocol and commands used. [Renaud] then opened the watch, figured out what the different test points and components were. He used his buspirate with OpenOCD to extract the existing STM32F103 firmware. The firmware helped him find the proper value to store in a dedicated register for the boot loader to start.

By looking at the disassembly code he also found the SPI LCD initialization sequence and discovered that it uses a controller similar to the ST7571. He finally compiled his own program which uses the u8glib graphics library. Follow us after the break for the demonstration video.

[Read more...]

An Open Source 1MHz Arbitrary Waveform Generator with an Awesome UI

1MHZ DDS

 

[Herp] just shared a nice 1MHz Arbitrary Waveform Generator (right click -> translate to English as google translation links don’t work) with a well designed user interface. His platform is based around a PIC32, a TFT module with its touchscreen and the 75MHz AD9834 Direct Digital Synthesizer (DDS). Of course the latter could generate signals with frequencies up to 37.5MHz… but that’s only if two output points are good enough for you.

As you can see in the video embedded below, the ‘tiny dds’ can generate many different kinds of periodic signals and even ones that are directly drawn on the touchscreen. The offset and signal amplitude can be adjusted using several operational amplifiers after the DDS ouput and a separate SMA TTL output is available to use a PIC32 PWM signal. The platform can read WAV audio files stored on microSD cards and also has an analog input for signal monitoring. Follow us after the break for the video.

[Read more...]

DEFCON 22: Badge Talk

LosT_giving-badge-talk_defcon22

I got a great seat on the main floor for the first big DEFCON 22 talk which is a welcome to the con and discussion of the badge hardware. [LosT], the creator of this year’s badge, started the discussion with a teaser about the badge… there’s a phone number hidden as part of the challenge. [LosT] took a call from someone chasing the puzzles. The guy was in the audience which was pretty fun.

The process of building a puzzle that can be solved at DEFCON is really tough. How do you make it just hard enough that it won’t get pwned right away but easy enough that a large number of attendees will be able to figure it out during the weekend? The answer is to build a secure system and introduce strategic flaws which will be the attack vectors for the attendees solving the badge challenge.

defcon22-badge-cut-traces-to-remove-components

Of course the badge can be used as a development platform. The populated electronics on the board all have these nice little footprints which can be cut to disconnect them from the chip. The breakout headers on either side of the board allow you to connect headers for your own uses. Great idea!

defcon-22_badge-lanyard-glyphs

The back of the lanyards have special characters on them too. This encourages community at the conference. To solve the puzzle you need to find others with different lanyards. Compare the glyphs and crack the code (so far I have no clue!!).

Know what I’m doing wrong? Have suggestions on where to go from here? I’ll be checking the comments!

San Francisco Event: Hardware Developers Didactic Galactic

 

header2

It’s a mouthful to say, but an evening-ful of fun. San Franciscans who like to talk about all things hardware need to block this one out on their calendars:

Hardware Developers Didactic Galactic
Thursday, August 14th 2014 starting 6pm-9:30pm
500 3rd St., Suite 230 in San Francisco

The night will include a few talks on hardware; So far we know [Matt Berggren] is doing FPGA stuff, [Chris Gammell] will talk about KiCAD, and I’m going to talk about the community adventure that is Mooltipass. We’re also looking for others to make presentations so step up and share your hardware passion!

In addition to the formal talks there’ll be plenty of time for chewing the fat with all the other hardware-awesomes that will be there. See you a week from tomorrow, and don’t be shy about bringing your own hardware to show off!

The Arduino Yun Shield

YUN

A few years ago, the most common method to put an Arduino project on the web was to add a small router loaded up with OpenWrt, wire up a serial connection, and use this router as a bridge to the Internet. This odd arrangement was possibly because the existing Arduino Ethernet and WiFi shields were too expensive or not capable enough, but either way the Arduino crew took notice and released the Arduino Yun: an Arduino with an SoC running Linux with an Ethernet port. It’s pretty much the same thing as an Arduino wired up to a router, with the added bonus of having tons of libraries available.

Since the Yun is basically a SoC grafted onto an Arduino, we’re surprised we haven’t seen something like this before. It’s an Arduino shield that adds a Linux SoC, WiFi, Ethernet, and USB Host to any Arduino board from the Uno, to the Duemilanove and Mega. It is basically identical to the Arduino Yun, and like the Yun it’s completely open for anyone to remix, share, and reuse.

The Yun shield found on the Dragino website features a small SoC running OpenWrt, separated from the rest of the Arduino board with a serial connection. The Linux side of the stack features a 400MHz AR9331 (the same processor as the Yun), 16 MB of Flash, and 64 MB of RAM for running a built-in web server and sending all the sensor data an Arduino can gather up to the cloud (Yun, by the way, means cloud).

All the hardware files are available on the Yun shield repo, with the Dragino HE module being the most difficult part to source.

An Excel Based High Frequency Transistor Amplifier Calculator

amplifier calculator

 

[Paulo] just tipped us about an Excel based high frequency transistor amplifier calculator he made. We’re guessing that some of our readers already are familiar with these class A amplifiers, commonly used to amplify small audio signals. Skipping over the fact that their efficiency is quite low — they are cheap to make, don’t require many components and usually are a great way to introduce transistors to new electronics enthusiasts. All you usually need to do is a few calculations to properly set your output signals and you’re good to go.

Things are however more complex when you are amplifying 200MHz+ signals, as all the components (complex) impedances have to be taken into account so you can get a nice amplification system. On a side note, at these frequencies your transmission lines impedances may even vary depending on how much solder and flux you left on your SMT pads along the way. [Paulo]‘s calculator will therefore compute most of the characteristics of two class A common emitter/collector amplifiers for specified loads.

 

Follow

Get every new post delivered to your Inbox.

Join 92,317 other followers