Hall effect limit switches for a 3D printer


We’re used to thinking of limit switches as a mechanical device that cuts the motor connection before physical damage can occur. [Anthony] decided to try a different route with this project. He built this set of no-contact limit switches using a hall effect sensor. The small black package sticking out past the end of the protoboard is the sensor. It is used to detect a magnetic field.

[Anthony] chose to use an Allegro A3144 sensor. Apparently it is no longer in production but was easy to find for a song and dance on eBay. When thinking about the design he decided to add two LED indicators, one lights when the switch is open and the other when it has been tripped. This would have been easy to do with just one LED, but he needed to add more parts to get both working. In the lower left corner of the protoboard you can see the configurable gate device (74LVC1G58) he added to monitor the hall effect sensor and switch the output and LEDs accordingly.

DIY $6 serial cable for vintage Apple QuickTake cameras


Knowing he was a guy who liked electronics and taking things apart, one of [Erik]‘s friends sent him a vintage Apple QuickTake 100/150 digital camera as a bit of a joke. [Erik] enjoyed the gift, but since his friend hadn’t sent the necessary serial cable he really couldn’t do that much with it. He searched online only to discover the cable is very difficult to find these days, and thus very expensive. So, being the handy guy he is, he built his own.

Starting with an Apple MiniDin8 Male cable, he cut off one end and attached the wiring to a RJ45 connector. That got plugged into a modular adapter with a DB9 Female Plug end and wired up. The procedure required no soldering, and cost less than $6. Awesome.

Unfortunately the lack of serial cable isn’t the only problem he faced. QuickTake isn’t compatible with newer Apple computers that use Intel. You have to either have a much older Mac, or use a Windows XP emulator. If that wasn’t bad enough, the cameras only want to save photos in QuickTake file format. Luckily, [Erik] documents how he overcome all these issues in his post.

[Thanks Erik]

Non-resettable thermal fuse teardown


This component is a one-shot thermal fuse. When the body rises above the specified temperature the two leads stop conducting. They’re useful in applications like motors, where you want to make sure power is cut to an overheating piece of hardware before permanent damage happens. They’re pretty simple, but we still enjoyed taking a look inside thanks to [Fatkuh's] video.

The metal housing is lined with a ceramic insulator, which you can see sticking out one end in the shape of a cone. It surrounds a spring which connects to both leads and is under a bit of tension. The alloy making the connections has a low melting point — in this case it’s about 70 C — which will melt, allowing the spring to pull away and break the connection. In the clip after the break [Fatkuh] uses his soldering iron to heat the housing past the melting point, tripping the fuse. He then cracks the ceramic cone to show what’s inside.

The only problem with using a fuse like this one is you’ll need to solder in a new component if it’s ever tripped. For applications where you need a fuse that protects against over current (rather than heat) a resettable polyfuse is the way to go.

[Read more...]

Tracking a car like it were a computer mouse


This is [Paul Mandel's] Ground-truth velocity sensor. That’s a fancy name for a device which tracks the movement of a vehicle by actually monitoring the ground its travelling over. This differs from simply measuring wheel rotation (which is how traditional odometers work) in that those systems are an indirect measurement of motion. For us the interesting part is the use of an ADNS-3080 single-chip optical mouse sensor on the left. It’s cheap, accurate, and only needs to be ruggedized before being strapped to the bottom of a car.

[Paul] designed a case that would protect the electronics and allow the sensor to mount on the uneven underbelly of a vehicle. The optical chip needs to be paired with a lens, and he went with one that cost about ten times as much as the sensor. Data is fed from the sensor to the main system controller using the PIC 18F2221. One little nugget that we learned from this project is to poll a register that always returns a default value as a sanity check. If you don’t get the expected value back it signals a communications problem, an important test for hardware going into the vibration-hell that is automotive technology.

Learn shift registers without involving a microcontroller


This is a truly hands-on approach to learning. [Kevin Darrah] ditched the microcontroller and is using push buttons to learn about 595 shift registers. The test rig uses two of the serial-in, parallel-out chips. These are cascading which means that as data from the first chip overflows it feeds the input of the second. The parts are commonly used to drive LEDs, or reduce the number of pins needed to drive peripherals like this character LCD.

The five push-buttons give you a chance to intuitively learn how the chip logic works. The blank button is also commonly called Output Enable (OE). Driving it high shuts off the outputs of the chips but doesn’t clear the data. That task is performed by the clear button which is driven low to set all of the shift register memory to zero. The other three buttons set the logic level, shift it into the chip using the clock signal, and push the stored values to the outputs using the latch.

To get a visual approximation of what’s happening inside of these chips you should check out the shift register tutorial linked to in this post.

[Read more...]

LTC3105 and LTC3109 energy harvesting chips


[Shahriar] devoted the lastest episode of The Signal Path to looking at energy harvesting chips. These parts are designed to gather energy from non-traditional sources as efficiently as possible. The full episode, which is embedded after the break, is about one hour long. It starts with a bit of background about the nature of these parts, and a brief overview of the wide-range of chips available. Each is suited for a different type of energy source.

He moves on to test and explain the LTC3105 and the LTC3109. The former is shown above on a development board. [Shahriar] hooks it up to his bench equipment to compare its performance to the published specs. This culminates in a circuit that uses a solar cell as the source with a super capacitor used as storage. The latter is connected to a Peltier cooler and used to convert the potential energy of ice cubes to electrical energy which charges his iPhone for about thirty seconds. This might be useful in that Peltier generator we saw last week.

[Read more...]

Hand soldering BGA parts should be a circus act

Okay, we think it’s questionable when people say they have no problem soldering QFN packages, but BGA? Granted this chip has far fewer balls on it than many, but it’s still quite impressive that [Xevel] was able to solder this BGA breakout by hand.

The chip you see above is a TMP006 infrared temperature sensor from TI. [Xevel] picked up the part but didn’t want to break the bank when prototyping by buying a proper PCB to host it. There are only eight conductors on it, arranged in a grid with 0.5mm pitch. That didn’t seem to scare him off, as the video after the break shows him connecting each to a conductor on a hunk of stripboard.

[Xevel] mentions that this is a dead-bug style project. Usually you glue the part upside down when using that technique, but it needs line of sight to get an accurate temperature reading so he first cut a hole in the substrate. We’d bet he’s using wire-wrapping wire to make the connections. It’s a very fine solid core wire which is perfect for this kind of work.

[Read more...]