Arduino Controlled Air Conditioner

Now that summer is coming, it’s time to break out the Air Conditioners! There are some old AC units out there that still work just fine, but nowadays we are used to everything being remotely controlled and automatic. [Phil] had an old window-mounted AC unit that still worked but was installed in a not-so-convenient place. To access the AC’s controls, one would have to climb over a large desk. This is a perfect opportunity to use the plethora of widely available hobby electronics to make an automatic AC controller retrofit.

First things first, there needs to be a way to turn the current control knob on the AC. [Phil] modeled up a 3D bracket to hold an RC car servo to the AC control panel. Attached to the servo horn is a slotted cylinder sized appropriately to fit the shape of the control knob. An Arduino measures the temperature of the room via a DS18B20 temperature sensor which then has the servo turn the control knob to the appropriate position, on or off. The Arduino sends temperature data back to a PC via MegunoLink Pro which graphs past data and also displays current temperature data. Using MegunoLink Pro, the min/max temperature points can also be set without uploading a new sketch to the Arduino.

Arduino Controlled AC

From the temp vs time graph, it looks like the room temperature stays a consistent 23 +/- 1 °C. [Phil] did us summer-swelterers a favor and made all his design files available. This is a great idea but wonder if leaving the air conditioner unit switch in the ‘on’ position and turning the unit on/off via a relay connected to the 120vac line would work just as well.

DIY AC for the Hot Shop

Working out in the shop is usually super fun but if it’s summertime, watch out, it can get hot! We’ve all been there and we’ve all wished we could do something about it. Well, woodworker and general DIYer [April] has stepped up to the plate and built a portable low-buck AC unit to cool her shop down to an acceptable temperature.

The unit is very simple and starts off with an old thrift store cooler. A hole is cut in the back of the cooler to make room for a fan that is directed to blow air inside the cooler and across blocks of ice. The air cools down as it passes over the ice and leaves out the top of the cooler through five 90-degree PVC elbows. After all the inlets and outlets were caulked, the entire unit was given a monochromatic black paint job.

[April] says you can feel the cool air blowing from about 5 feet away from the unit. She has measured the output air temperature to be 58-62ºF. If using loose ice cubes, the unit will work for 2-3 hours. Freezing milk jugs full of water gets about 5 hours of use.

Using The Sun To Beat The Heat

It’s practically May, and that means the sweltering heat of summer is nearly upon us. Soon you’ll be sitting outside somewhere, perhaps by a lake, or fishing from a canoe, or atop a blanket spread out on the grass at a music festival, all the while wishing you had built yourself a solar-powered personal air conditioner.

[Nords] created his from a large insulated beverage vessel. The imbibing spout offers a pre-made path to the depths of said vessel and the heart of this build, the ice water refrigerant. [Nords] fashioned a coil out of copper tubing to use as a heat exchanger and strapped it to the fan that performed best in a noise-benefit analysis.

A small USB-powered submersible pump moves the ice water up through the copper tubing. Both the pump and the fan run off of a 5V solar panel and are connected with a USB Y cable, eliminating the need for soldering. Even if you spend the summer inside, you could still find yourself uncomfortably warm. Provided you have access to ice, you could make this really cool desktop air conditioner.

[via Embedded Lab]

A Do-It-Yourself Air Conditioner with Evaporative Cooling 5 Gallon Bucket

image42-300x225The people over at Gray Wolf Survival have this amazing little air conditioning project that is a perfect addition to any household that doesn’t have flowing air wafting through. It was created by [Figjam] for a trip to Burning Man, where all kinds of crazy ideas are bred in the hot dry heat of The Playa sun.

The design uses no ice, which is the cooling agent typical found in other DIY air conditioners. Those generally cut holes in the top of a cooler, put a fan on top to blow the air down across the ice. This is similar, but acts more like an evaporative cooler (not really a traditional air conditioner but it does the job).

397648283-300x225It uses a LOT less energy than an air conditioner unit so there won’t be a need to increase the power capabilities of a simple system to work it, and it can reduce the temperature by up to 30 degrees as well as alleviate the dryness associated with living through a Burn. It runs off 12V DC so it can either use the solar panel or connect to a battery. It has a 12V power plug for this, and draws as little power as absolutely possible. Plus, it has the ability to easily connect to a larger water source so it won’t have to be continually refilled. These considerations make it very portable and perhaps backpackable as well.

[Figjam] took a 5 gallon bucket, wrapped the inside with two layers of swamp cooler matting, made a loop of hose above it connected to a submersible pump and ran a fan out the top with piping. Connecting it to a shelter is done with a vent hose.

Zero-Dollar AC System Looks Funny But Works Well

Summer is here and with summer comes hot days. You probably know that us humans get uncomfortable if the temperature rises too much. Sure, we could turn on the loud and inefficient window AC unit and try to stay mildly comfortable while the electric company pick-pockets pennies from our change purse, but what is the fun in that? [Fran] had a better idea.

He noticed that his basement was always in the upper 50°F range regardless of how hot it was outside. He wanted the cool basement air to reside upstairs in the living area. After thinking long and hard about it he decided that a box fan and two long, skinny cardboard boxes assembled together would be enough to move the required amount of air. Both the fan and boxes were kicking around the house so was no cost and no risk to try this out. Continue reading “Zero-Dollar AC System Looks Funny But Works Well”

This Desktop Air Conditioner Is Really Cool!

[Mike] works in a 50+ year old building with unreliable air conditioning. It often reaches 80°F inside during the summer, and he once measured it at 98°F. Rather than burn sick days, he became the envy of the office when he built this awesome desktop air conditioner.

The problem with knocking holes in the office walls and installing window units is that they must vent heat somewhere. [Mike] has overcome adversity and harnessed the power of the heatsink, only in reverse. His desktop a/c unit is made from two 28oz cans plus a 20oz can for the ice bucket. [Mike] used a side-vented CPU fan, which is vital to his design. He secured the heatsink to the base of one 28oz can with a self-tapping screw. This can is the upper chamber. [Mike] made a base from the other 28oz can, drilling holes for the CPU fan wires, the power cord, and a sweet light-up rocker switch. He used Gorilla Glue to affix the CPU fan to the base can.

Hot, stale office air is drawn through the ice in the 20oz can, which is nestled in aluminum foil to maximize heat transfer to the heatsink. The heat in the air gets absorbed by the heatsink, and the CPU fan kicks out cool air in 20-30 seconds.

Hacked AC and ash filter

Moscow is in a bit of a hot spot right now, dealing with a heat wave and enormous wildfires. The combination of smoke, ash, and heat was driving Andrew up a wall so he built a contraption to provide some relief. It has two chambers, the bottom houses ice water, the top is an air baffle. A small DC fan pumps air into the upper chamber where it encounters the water being sprayed in from the lower reservoir. What results is a heat exchange similar to other diy AC setups we’ve seen. But Andrew also notes that after running the device for a while the smell of smoke and ash is gone. Can this setup be seen as an effective way to trap airborne smoke particles?