Hacked CCFL Inverter becomes an Arc Lighter

[GreatScott!] needs to light off fireworks with an arc rather than a flame, because “fireworks and plasma” is cooler than fireworks and no plasma. To that end, he attempted to reverse engineer an arc lighter, but an epoxy potted high-voltage assembly thwarted him. Refusing to accept defeat, he modified a CCFL inverter into an arc lighter, and the process is pretty educational.

With his usual impeccable handwriting and schematic drawing skills, [GreatScott!] documents that his CCFL inverter is a resonant Royer oscillator producing a sine wave of about 37 kHz, which is then boosted to about 2400 volts. That’s pretty good, but nowhere near the 15 kilovolts needed for a self-sustaining arc across electrodes placed 5 mm apart. A little math told him that he could achieve this by rewinding the transformer’s primary with only 4 turns. After some testing, the rewound transformer was fitted back into the Royer circuit and with a few modifications the arc was struck.

It’s not a finished project yet, and we’re looking forward to seeing how [GreatScott!] puts this to use. For now, we’re grateful for the lesson is Royer oscillators and rewinding transformers. But if you’d rather hack an off-the-shelf arc lighter, there’s always this arc lighter pyrography pen, or this mini plasma cutter.

Continue reading “Hacked CCFL Inverter becomes an Arc Lighter”

Arc Lighter become Plasma Pyrography Pen

Wood burning can be quite a striking art form, but who wants to be stuck using an old-fashioned resistive heating element to char wood? You could go with laser engraving, of course, but that seems to take too much of the human touch out of it. So why not try a mini plasma pen and blow torch powered by a fancy cigarette lighter?

Arc lighters are rechargeable electronic lighters that look like a tiny stun-gun, and [NightHawkInLight] has been coming up with some interesting hacks for them. In this case, he extended the electrode leads out and mounted them to a wooden handle. The spark gap is only about 2mm, but the resulting arc is plenty hot enough to char wood with considerable precision. You’ve got to work fast, though, or the high voltage will start finding interesting paths through the char, producing Lichtenberg figures. And if a micro-scale blow torch is a tool you need, [NightHawkInLight] has got that covered too – a small brass tube with a pinched-off nozzle hooked to an aquarium pump provides the pressure for that.

Might there be other applications for this beyond pyrography? Maybe soldering or desoldering? Of non-ESD sensitive components, naturally.

Continue reading “Arc Lighter become Plasma Pyrography Pen”

Painting the Sky with Shooting Stars

Japanese company ALE has been working on a new type of sky show, artificial shooting stars, literally creating an artificial meteor shower at a height of 40 to 50 miles (60 to 80km). The show will be visible to anyone within a 125 mile diameter area (200km), meaning that people in New York city and Philadelphia or Los Angeles and San Diego can watch the same show. Aptly named, they’re calling the project “Sky Canvas”.

The plan is to have a satellite, containing around 500 to 1000 source particles, discharge the particles with a specially designed device. As the video below shows, by ejecting the particles in a continuous manner, rather than all at once, they’ll create the equivalent of a meteor shower. The particles will travel around 1/3rd the way around the Earth before entering the atmosphere, creating the shower of shooting stars. Different colors will be possible by using different materials for the particles, something this fireball cannon illustrates.

Continue reading “Painting the Sky with Shooting Stars”

It’s a Bird, It’s a Plane, No… It’s High Voltage EPROM Man!

At Hackaday, we cover some pretty high-tech builds. Sometimes, though, you see something simple, but it still makes you feel happy to see it. That’s pretty much the case with [ProtoG’s] High Voltage EPROM Man.

The parts probably came out of a junk box, but the good news is that they don’t have to work, and you can freely substitute anything you have. According to [ProtoG], the “robot” head is a bulb socket with a crystal for the visor. The arms are fuses with fuse clips for the hands. The knees are adjustable caps, and the feet are TO-220 transistors.

Continue reading “It’s a Bird, It’s a Plane, No… It’s High Voltage EPROM Man!”

11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber

In the high-voltage world, a Jacob’s ladder is truly a sight to behold. They are often associated with mad scientist labs, due to both the awesome visual display and the sound that they make. A Jacob’s ladder is typically very simple. You need a high voltage electricity source and two bare wires. The wires are placed next to each other, almost in parallel. They form a slight “V” shape and are placed vertically. The system acts essentially as a short-circuit. The voltage is high enough to break through the air at the point where the wires are nearest to each other. The air rises as it heats up, moving the current path along with it. The result is the arc slowly raising upwards, extending in length. The sound also lowers in frequency as the arc gets longer, and once [Gristc] tuned his system just right the sound reminds us of the Holy Trilogy.

We’ve seen these made in the past with other types of transformers that typically put out around 15,000 Volts at 30mA. In this case, [Gristc] supersized the design using a much beefier transformer that puts out 11,000 Volts at 300mA. He runs the output from the transformer through eight microwave oven capacitors as a ballast. He says that without this, the system will immediately trip the circuit breakers in his house.

In the demo video below, you can see just how large the arc is. It appears to get about 10 inches long before breaking with a sound different from any Jacob’s ladders we’ve seen in the past as well. Continue reading “11,000 Volt Jacob’s Ladder Sounds Like a Lightsaber”

Low-Voltage Tesla Coil Uses a Relay Instead of a Spark Gap

[Teodor] writes in with a unique Tesla coil he designed and built. Unlike most Tesla coils, [Teodor]’s design is able to run with a fairly low input voltage because it doesn’t use a static spark gap like most Tesla coils. Instead, his coil uses a relay in place of a spark gap.

[Teodor] built his coil using leftover components from his old school, making good use of some parts that might have otherwise been thrown away. The most critical component of his circuit, the relay, is just a standard normally-closed relay that is rated at 20A. [Teodor] wired the relay so that it energizes its own coil whenever it is shut. This causes the relay to briefly open every time the coil is energized, creating a resonant circuit. The resonant circuit charges a tank capacitor and places it in series with the primary coil inductor every time the relay closes, forming the tank circuit of his design.

With [Teodor]’s design, the resonant frequency of the secondary is nearly identical to that of the primary. This creates a significant voltage boost, helping produce very high voltages from such a low input voltage. The only downside to this design that [Teodor] recently discovered is that the relay contacts get red-hot after a few minutes of operation. Not optimal, but it still works! Check out [Teodor]’s writeup for more details and instructions on how to build your own.

Ephemeral Photographs Staged with Artful Inventions

[Gordon Kirkwood’s] focus as a photographer is in capturing ephemeral phenomena, that is, things that are exhilarating to see but also fleeting. In the pursuit of documenting such blips of beauty found in the natural word, he has taken on engineering the circumstance through which they occur by means of technology.

One of the amazing mechanical creations he’s constructed to aid in his photography is a large computer controlled, bubble blower. A few stepper motors work to dilate three segments of soap-soaked rope engaged at 120 degree angles to create a triangular aperture. When the aperture closes, the segments overlap slightly, covering themselves with a consistent coating of suds. When the segments stretch apart, a fan blows a current of air towards the center, pushing the sheath of fluid into ginormous glimmering orbs which he uses as the focal point in some of his photographs.


More currently, [Gordon] has been developing a body of work that involves zapping botanical subject matter with a quarter-million volts from a portable arc producing device he’s created and capturing the reaction with an ultra low-tech camera (the kind with the bellow and sheet you hide under while exposing the film). Using a method all his own, the shots recorded on large format film are claimed to turn out with even more clarity than any current digital camera in use today. [Gordon] has launched a crowd funding campaign to support a pilgrimage to the majestic island of Hawaii, where he’ll use his lightning producing apparatus on ten different specimens of tropical plant life so that he can record the outcome with his tried and proven technique. (see below an artsy shot of his lightning summoner)


Sometimes Kickstarter isn’t so much about commercialism as it is starting a dialogue with the world and beginning a personal adventure. May the journey lead to new inventions and larger, more ambitious projects! Oh yeah- the bubble blowing machine is a must-see in action. Wicked cool:

Continue reading “Ephemeral Photographs Staged with Artful Inventions”