Beest of an RC Toy

Sometimes hackers and makers hack and make stuff just because they can. Why spend hours in a CAD program designing a gazillion gears, brackets and struts? Why cut them all out on a homemade CNC? Why use a PIC and perf board to control everything? Because we can. Well, because [Est] can, rather. He put together this RC controlled beast of a toy with multiple legs and crushing claws.

It’s made out of 6 mm acrylic and threaded rod. The legs are controlled by two DC motors, while the mouth uses two geared steppers. The beast talks to the controller via a pair of 433 MHz transceivers using a protocol similar to how an IR remote talks to a television. A handful of LEDs lights up the clear acrylic, making it look extra scary.

This design is, of course, based on the Strandbeest concept from [Theo Jansen]. It’s a great robotics project because your project doesn’t suffer under its own weight. It’s more like a tracked machine. In fact, we saw a huge rideable version made of metal at BAMF this year. That’s one you just can’t miss!

Continue reading “Beest of an RC Toy”

We Have A Problem: 3D Printers Are Too Expensive

Hackaday, we have a problem. 3D printing is changing the world but it’s still too expensive to be embraced as a truly transformative technology.

With each passing year, the 3D printing industry grows by leaps and bounds. Food safe PLA is now the norm, with dissolvable and other exotic filaments becoming more mainstream.  New filaments are making it possible to print objects that were not possible before. New CAD software is popping up like dandelions, with each iteration giving novice users a friendly and more intuitive interface to design 3D models. As time marches on, and we look into its future, a vision of the 3D printing world is evident – its only going to get bigger.

3d printerImagine a future where a 3D printer is as common as an ink jet printer in homes all across the world.  A future where you could buy filament from the supermarket down the street, and pick up a new printer from any hardware store. A future where dishwashers, refrigerators and bicycles come with .stl files that allow you to print upgrades or spare parts. A future where companies compete to give the market easy-to-use printers at the cheapest price.

Is this future possible? Not until the technology changes. It’s too expensive, and that’s the problem you’re going to solve. How can you make a 3D printer cheaper? A cheap printer could change the game and make our future a reality.

Where do we need cost savings?

To get you going, here are some parts of common 3D Printers which think need to find cost-saving solutions.

XYZ AND HOT END MOTORS

Stepper motors are going to run you about $15 each. Is it possible to use cheaper DC motors with some type of position tracking while keeping the cost down?

HARDWARE

Threaded rod is probably the cheapest way to move your XYZ axis. What about couplings and guide rods? Check out how this guy made a CNC out of parts from his local hardware store.

ELECTRONICS

No arduino with Easysteppers here – too expensive. We’ve just seen a super cheap controller a few days ago. If we use something other than NEMA steppers, it will radically change the typical electronic controller for our super cheap 3d printer.

EXTRUDER

What is the cheapest way to melt and extrude plastic? What about using thermistors in place of thermocouples? Let’s think out of the box with this, and see if we can get away from the typical stepper motor based extruder. Remember, everything is low cost. If we have to sacrifice some resolution, that is OK.

So there you go. Let’s hear your input on the issue. We need to make 3D printers a lot more affordable and we want to hear any ideas you have on the topic in the comments below. Do you think this is in our future and why?


The 2015 Hackaday Prize is sponsored by:

DIY MDF CNC Machine Is Small And Solid

In the world of hobby-level CNC cost and simplicity are usually the name of the game. Using inexpensive and easily found materials makes a big difference in the feasibility of a project. [FreeRider] had built a CNC router before but it was big, flexible and not as accurate as he wanted. He set off to design his own table top router, influenced from other designs found on the ‘net, but also keeping the costs down and ease of build up.

The machine frame is made from 3/4″ MDF and was cut on [FreeRider’s] first router, the JGRO. Notice how all the holes are counterbored for the many bolt heads. It is clear that much attention to detail went into the design of this machine. Aluminum angle act as linear rails on which v-wheel bearings travel. Skate bearings support 5/16″ threaded rod used as lead screws. Lead nuts are tapped HDPE blocks and seem to be doing a satisfactory job with minimal backlash.

[FreeRider] says his new machine is capable of 60 inches per minute travel, double that of his old machine. Since the new machine is stiffer, he’s able to route aluminum and has successfully made some brackets out of 1/8″ plate. He reports the dimensional accurate to be about 0.002-0.003 inches. For more inexpensive MDF-based CNC machines, check out this drawer slide bearing one or this one that uses a drill for a spindle.

PVC CNC Machine Build Results In A Great Learning Experience

Hobby level CNC machines are fun to use and are a great tool to make your projects with. So how does a CNC newb get started? Our opinion is that it’s best to jump right in and get doing. [WTH] wanted to learn more about CNC machines and decided to build his own using parts that were kicking around his house.

As you can see, the frame is made from PVC pipe. In addition, the linear rails are also PVC and the linear bearings….. larger diameter PVC. Scavenged stepper motors and threaded rod are responsible for moving the X and Y axes. Electronics-wise, an Arduino Uno running GRBL and a Protoneer CNC Shield outfitted with StepSticks drive the motors. Here’s a test drawing completed by the machine:

PVC CNC

Admittedly, this CNC machine won’t be milling out steel parts any time soon but that is not the point. [WTF] has learned the mechanics, electronics and software associated with CNC machines and that was the point of the project. We are looking forward to seeing how his next machine comes out.

This isn’t the first PVC CNC machine we’ve seen on Hackaday, check out this unorthodox one.

The Hackaday Prize: An Ultra Low Cost 3D Printer Controller

This isn’t a Hackaday Prize entry that will change the world, but that doesn’t mean there’s not a place for it. [vdirienzo] is building an ultra low-cost 3D printer controller for 3D printers and other CNC machine. It’s not going to change the world, but it is a rather interesting little device.

This printer controller is very minimal, with a single-sided circuit board with just enough parts and components to make this board useful. The stepper motor drivers are from Pololu, and most of the other components are stuff you could pull out of a reasonably stocked junk drawer. The microcontroller is rather interesting; it’s an Arduino Nano. Instead of the ATMega644 and ‘Mega1280 microcontrollers found on other 8-bit printer controller boards, [vdirienzo] slimmed down the Teacup firmware to fit on the ATMega328 in the Arduino Nano.

The SinapTec is not by any means the first effort to create an ultra low-cost controller board for a 3D printer that can be assembled at home. The RepRap Gen 7 electronics can be manufactured on a RepRap or small CNC mill. There’s not much to these boards – just a small, single-sided board. If you want a small, simple, and cheap controller board for a 3D printer, this is all you need.

While a cheap 3D printer controller board doesn’t really fit with the ‘change the world’ theme of The Hackaday Prize, that doesn’t mean there’s still not a place in the contest for [vdirienzo]’s entry; we have a Best Product category, with a $100k prize and a six month residency in the Hackaday Design Lab. If that’s not enough reason to build something cool – even if it won’t change the world – we don’t know what is.


The 2015 Hackaday Prize is sponsored by:

An Open Source, DIY Digitizer

When you look at the current methods of scanning 2D and 3D objects available today, you’re basically looking at an imaging process. Either you take a picture of a 2D object, or you grab a blob of point clouds with a 3D scanner and make a 3D object that way. It wasn’t always like this – real, hardware 3D digitizers were used all the way back in the 70s, and touch probes are standard equipment on high-end CNC machines.

[Nikolaj Møbius] needed a way to record points in physical space, and not wanting to deal with the problems of images, he made an open source DIY digitizer. It’s basically a laser cut arm with rotary encoders at each joint. By reading the rotary encoders with an Arduino, [Nikolaj] can digitize a few points on a workpiece – just enough to make a bracket, or find the critical dimensions of a part.

It’s a great tool for when you need a little more information than a set of calipers can provide, and a great example of some ancient tech made useful again.

Continue reading “An Open Source, DIY Digitizer”

Hackaday Prize Entry: DC Motor Controller

There are a lot of cheap Chinese CNC machines out there with okay mechanics and terrible electronics. The bearings aren’t complete crap, but the spindle of these CNC machines is a standalone PWM controller with a pot to control the speed. This means you can’t control the spindle speed with LinuxCNC or Mach3.

For his Hackaday Prize entry, [SUF] is building a DC motor controller for a Chinese spindle motor that doesn’t use any kind of encoder. The first part of that project is fairly easy; [SUF] has already built a high current driver. The second bit is a little it harder – because these spindles don’t have an encoder, [SUF] will have to read voltage spikes on the motor poles, giving him the RPM of the spindle. From there, it’s a bit of PID code to get this spindle running at a desired RPM and connecting it to a CNC control box.

So far, [SUF] has a second version of his board waiting for assembly. In the first version of the board, the switching time for the MOSFET was a little slow, but that’s all corrected in the current revision. It’s a great project to extend the capability of these cheap CNC machines, and perfect project for the Hackaday Prize.


The 2015 Hackaday Prize is sponsored by: