Open-Source Laser Cutter Software gets Major Update, New Features

The LaserWeb project recently released version 3, with many new features and improvements ready to give your laser cutter or engraver a serious boost in capabilities! On top of that, new 3-axis CNC support means that the door is open to having LaserWeb do for other CNC tools what it has already done for laser cutting and engraving.

LaserWeb BurnsLaserWeb3 supports different controllers and the machines they might be connected to – whether they are home-made systems, CNC frames equipped with laser diode emitters (such as retrofitted 3D printers), or one of those affordable blue-box 40W Chinese lasers with the proprietary controller replaced by something like a SmoothieBoard.

We’ve covered the LaserWeb project in the past but since then a whole lot of new development has been contributed, resulting in better performance with new features (like CNC mode) and a new UI. The newest version includes not only an improved ability to import multiple files and formats into single multi-layered jobs, but also Smoothieware Ethernet support and a job cost estimator. Performance in LaserWeb3 is currently best with Smoothieware, but you can still save and export GCODE to use it with Grbl, Marlin, EMC2, or Mach3.

The project is open to contributions from CNC / Javascript / UX developers to bring it to the next level. If you’re interested in helping bring the project even further, and helping it do for 3-axis CNC what it did for Laser Cutting, project coordinator [Peter van der Walt] would like you to head to the github repository!

We recently shared a lot of great information on safe homebrew laser cutter design. Are you making your own laser cutting machine, or retrofitting an existing one? Let us know about it in the comments!

Hackaday Prize Entry: A Simple CNC

3D printers are all the rage, but there’s still space for more traditional CNC machines. For their Hackaday Prize entry, [Andy], [Tim], and [Chris] are building the Sienci Mill – a simple desktop CNC mill that’s able to cut drill and carve everything from wood to circuit boards.

As far as desktop CNC machines go, it doesn’t get much more simple than this. They’re using steel plates for the rails, NEMA 17s for the motors, and a simple stepper motor driver Arduino shield for the controller. The more complex parts are 3D printed, and the BOM doesn’t add up to much.

Right now, the guys are testing their mill on wood, plastic, and aluminum. With 3D printed parts, they’re also able to test a bunch of different spindles from the ubiquitous router to the smaller Dremel. It’s a great project and should be fantastically cheap when the guys finalize the plans, making this a great entry for the Hackaday Prize.

The HackadayPrize2016 is Sponsored by:

A Hydra Of A 3D Printer

3D printers are great for producing one thing, but if you need multiple copies, the workflow quickly starts to go downhill. The solution? Build a 3D printer with multiple print heads, capable of printing four objects in the same amount of time it takes to print one.

This build is an experiment for [allted]’ Mostly Printed CNC / MultiTool. It’s a CNC machine that uses printed parts and 3/4″ electrical conduit for the frame and rails.  That last bit is the interesting part: electrical conduit is cheap, easy to acquire, available everywhere, and can be cut with a hacksaw. As far as desktop CNC machines go, it doesn’t get simpler or cheaper than this, and a few of these builds are milling wood with the same quality of a machine based on linear rails. It won the grand prize in the recent Boca Bearings contest, and is a great basis for a cheap and serviceable 2.5 or 3D CNC.

[allted] already has this cheap CNC mill cutting aluminum and engraving wood with a laser, showing off the capabilities of a remarkably cheap but highly expandable CNC machine. It’s a fantastic build, and we can’t wait to see more of these machines pop up in garages and workspaces.

Continue reading “A Hydra Of A 3D Printer”

Denver Mini Maker Faire Roundup

I had a great time at Denver’s 3rd annual Mini Maker Faire, which was held inside the Denver Museum of Nature and Science. The official theme this year was “Building the Future” and looking back, I can tell you that they pulled the theme off well. There was a strong turnout in two categories that are crucial to building the future: the growth that comes from education at all ages and the physical places where learning becomes immersive.

The Really Fun Stuff

poison arrow[Casey] from Caustic Creations were showing off Poison Arrow just in time for season 2 of the BattleBots reboot. Poison Arrow is 250-lb. drum spinner that destroys things at 9,000 RPM. Here’s a nice introductory video shot by their sponsor, Arrow Electronics. [Casey] told me that Poison Arrow will be on the June 30th episode, so set your DVR.

Who knew that Colorado had so many maker- and hackerspaces? Colorado Makerhub, that’s who. They provide a portal to everything maker-related in Colorado, and they were in attendance along with most of the ‘spaces within a 50-mile radius of the city. Denver’s own Denhac brought a huge multiplayer rig that they had built for Comic Con last year. It runs Artemis, a spaceship bridge simulator game that divides up the tasks necessary for successful intergalactic travel. Here’s a video of Denhac member [Radio Shack] describing the game and giving a tour of one of the consoles. The group landed a space in one of the darker areas of the museum, which made the blinkenlights irresistible, especially to boys of a certain age range.

Continue reading “Denver Mini Maker Faire Roundup”

A CNC You Could Pop-Rivet Together

You have to be careful with CNC; it’s a slippery slope. You start off one day just trying out a 3D printer, and it’s not six months before you’re elbow deep in a discarded Xerox looking for stepper motors and precision rods. This is evident from [Dan] and his brother’s angle aluminum CNC build.

Five or six years ago they teamed up to build one of those MDF CNC routers. It was okay, but really only cut foam. So they moved on to a Rostock 3D printer. This worked much better, and for a few years it sated them. However, recently, they just weren’t getting what they needed from it. The 3D printer had taught them a lot of new things, 3D modeling, the ins of running a CNC, and a whole slew of making skills. They decided to tackle the CNC again.

The new design is simple and cheap. The frame is angle aluminum held together with screws. The motion components are all 3D printed. The spindle is just an import rotary tool. It’s a simple design, and it should serve them well for light, low precision cuts. We suspect that it’s not the last machine the pair will build. You can see it in action in the video after the break.

Continue reading “A CNC You Could Pop-Rivet Together”

Build a Shapeoko The Hard Way

[Caleb Peters] looked at the Shapeoko 3 CNC kit, a kit designed to make building an entry level CNC router a possibility for anyone, a kit to take the guesswork out of the equation, a kit that removes all those difficult technical barriers. He looked at all of that ease and thought, “nah.” He wanted to learn! So he decided to build one the hard way. Like the early American Pioneers, he’d build his Shapeoko from scratch, suffering piously all the while.

His goal was to build an improved iteration of the Shapeoko 3, for less than the price of the kit. The first problem was the rails the gantry would run on. Inventables wasn’t going to sell him the rails, and he wasn’t sure if the delrin wheels used would be able to hold the weight of his heavier design. After some strife he determined that aluminum hard coat rails and steel wheels should last long enough, and if the aluminum wore away, the more expensive steel rails were a drop-in replacement.

Similar problems were overcome at each step. He couldn’t exactly copy the Shapeoko design. The Shapeoko’s steel pieces can only be made on a larger machine like a waterjet or industrial laser. He did have a knee mill and managed to cleverly avoid the need with some slight redesign. He kept at it, doing cool things like drilling a hole through the housing of a wood router, used as the spindle, and putting a hall-effect sensor just behind the commutator and brush assembly to get a spindle rpm reading.

Fortunately for us, he documented it all very well and filmed a nine part video series; the last of which you can see after the break.

Continue reading “Build a Shapeoko The Hard Way”

The Unity of Dance and Architecture

In an ambitious and ingenious blend of mechanical construction and the art of dance, [Syuko Kato] and [Vincent Huyghe] from The Bartlett School of Architecture’s Interactive Architecture Lab have designed a robotic system that creates structures from a dancer’s movements that they have christened Fabricating Performance.

A camera records the dancer’s movements, which are then analyzed and used to direct an industrial robot arm and an industrial CNC pipe bending machine to construct spatial artifacts. This creates a feedback loop — dance movements create architecture that becomes part of the performance which in turn interacts with the dancer. [Huyghe] suggests an ideal wherein an array of metal manipulating robots would be able to keep up with the movements of the performer and create a unique, fluid, and dynamic experience. This opens up some seriously cool concepts for performance art.

Continue reading “The Unity of Dance and Architecture”