A Machine Shop in A Toolbox: Just Add Time

You don’t need any fancy tools. A CNC machine is nice. A 3D printer can help. Laser cutters are just great. However, when it comes to actually making something, none of this is exactly necessary. With a basic set of hand tools and a few simple power tools, most of which can be picked up for a pittance, many things of surprising complexity, precision, and quality can be made.

Not as pretty, but worked just the same.
Not as pretty, but worked just the same.

A while back I was working on a ring light for my 3D printer. I already had a collection of LEDs, as all hackers are weak for a five-dollar assortment box. So I got on my CAD software of choice and modeled out a ring that I was going to laser cut out of plywood. It would have holes for each of the LEDs. To get a file ready for laser cutting ook around ten minutes. I started to get ready to leave the house and do the ten minute drive to the hackerspace, the ten minutes firing up and using the laser cutter (assuming it wasn’t occupied) and the drive back. It suddenly occurred to me that I was being very silly. I pulled out a sheet of plywood. Drew three circles on it with a compass and subdivided the circle. Under ten minutes of work with basic layout tools, a power drill, and a coping saw and I had the part. This was versus the 40 minutes it would have taken me to fire up the laser cutter.

A lot of the tools we use today were made to win against economies of scale. However, we’re often not doing any of that. We’re building one or two. Often the sheer set-up cost isn’t worth it. Likewise, the skill from being able to do it without the machine will come in handy. There’s an art to using a file properly and getting the expected result. So it’s good to take the time now to practice and develop the manual skills, you never know when you’ll be out trying to do an emergency fit on a part and no one in the area has a single milling machine just sitting around.

So what tools would a hacker need to get the closest to a machine shop without having one or spending too much money? For most needs a person can build a surprising amount of things with nothing more than the following tools.

Basic Metrology: Now if you really want to do precision work you may need more expensive tools, but often we are just spoiled by precision. We can design our parts with a little more wiggle room and just spend the time adjusting them.

  • Calipers – Since they are so cheap now, there is no reason not to own a simple digital or dial caliper. For most work this will be able to measure most things well enough for all practical purposes. Honestly if you’re building something that needs a full metrology suite you’re probably making it hard on yourself. This even goes for production work.
  • Rule – Not a ruler. A steel rule. This will have a ground flat edge and precise graduations. You can use this for layout.

    Chris over at Clickspring is always using the glued paper trick to do some very accurate work.
    Chris over at Clickspring is always using the glued paper trick to do some very accurate work.
  • Square – A carpenter’s combination square can be used for a lot of layout. It’s not as fantastically precise as a real machinists square, but I’ve yet to ever actually need the precision of a real machinist’s square for every day hacking.
  • Compass & Protractor – To be able to layout circles and angles is key. Buy a robust one rather than a nice one. The kind for school children is pretty good.
  • Scribe and Punch- Pencil and Permanent Marker- In lieu of layout fluid a permanent marker is enough to bring out scribed lines on metal. A pencil is great for the rest of the materials. Lastly a punch is essential for drilling holes.
  • Glue stick – With CAD software as amazing and free as it is there’s no reason not to just print out a template and glue it to your part. Contact cement or a simple glue stick is all you need

Working: Next comes working the material itself. Hand working typically happens in two steps. Bulk removal and fine removal. To do the first you need good layout and a bit of experience. To do the second you need even better layout, a godlike amount of patience, a strong back (or a workbench at the right height) and a way to hold the part firmly.

Trust me when I say I've worn out a lot of work gloves and these hold up the longest.
Trust me when I say I’ve worn out a lot of work gloves and these hold up the longest.
  • Stubby Knife (and cut proof gloves) – A knife that lets you get your fingers close to the work, such as an exacto blade or a utility knife. That being said I’m lucky to still have digits with full working ranges. It doesn’t matter how careful you are, it is statistically impossible to not eventually cut yourself with a knife. It then comes down to how damaging that cut will be. Most will hit the flesh of the hand and be relatively harmless, just painful. However, if you hit a tendon say goodbye to full range of motion forever and hello to surgery and picking up an instrument (source: Grew up with an occupational therapist as a parent, that’ll scare the gloves on ya). To that end I highly recommend a good set of kevlar cut-proof gloves. My absolute favorite is the Ansell Blue Nitrile Coated Kevlar HyFlex glove. They’re pricey but they last forever (I would go through five sets of leather gloves in the time it took me to start to see wear on the HyFlex) and give practically normal range of motion and feel for the work.
  • Big File – A coarse bastard file is a must have. If you can only afford one get one with a flat side and a round side. It will be a little difficult not to cut into right angles, but a bit of masking tape or a section of plastic can help with this. Also, the traditional brands like Nicholson can no longer be trusted, do some research before paying more than five bucks for a regular file these days. Only a few brands deliver a long-lasting file. Lastly, watch a few videos on the proper use of a file. If you do it right they’ll cut fast and last a long time.
  • Round File – A round file is useful for a staggering amount of things, but mostly for fitting holes and shaping radii.
  • Little Files – I recommend spending a bit on a nice quality set. One small round, small triangle, and small-D shaped file is a good start. I’d also recommend a small flat file with a safe side for sharpening corners.
  • Japanese Pull Saw – Wood is a great prototyping material and there is no better saw for general woodworking than a Japanese pull saw. If you want to get deeper into the craft then there is a reason for the other saws, but general joints, shaping, etc can be done quickly and precisely with the saw.
  • Hacksaw – A hacksaw can cut through any material as long as you buy the right blade and are willing to sweat. A good hacksaw frame can put a lot of tension on a blade without a lot of added bulk. If it has both a lever action and a thumb screw it is likely to be able to do this. A good hacksaw blade is almost never sold with the frame.

    The metal fabricator's handbook will blow your mind if you've ever wondered how people made armor or hot-rods. It's hard, but technically simple.
    The metal fabricator’s handbook will blow your mind if you’ve ever wondered how people made armor or hot-rods. It’s hard, but technically simple.
  • Coping Saw – Think of a coping saw as a manual laser cutter. There are some nice ones out there, but the blade is the important thing to buy. Weirdly they are getting harder to find these days. I think less people are using them but no shop should be without a coping saw.
  • Plier Set – A set of pliers. Needle Nose, End Cutters, Side Cutters, and Lineman’s is a good place to start.
  • Tongs – I define a tong as any plier that you’re going to heat up. Keep this one separate from your regular pliers. It’s also good for holding something while you beat on it with a hammer. You’ll probably break it eventually.
  • Clamp or Vise – No shop should be without some way of holding a piece firmly. This is one of your most important tools. Really high quality ones usually show up at garage sales or Craigslist; sold by ignorant family members. Look for one that has nice thick jaws and a flat area on the back.
  • Hammer and Scrap Wood – You’d be amazed at the shapes a person can draw out of regular sheet stock with a hammer and scrap wood. This is a must have for the shop. A regular claw hammer and a ball peen are an absolute necessity.

Modern Day Luxuries: There’s no need to stay completely manual though. With Horrible Freight right around the corner or slightly better alternatives for a premium at the home improvement shop there’s no need to to have a few modern luxuries.

A pencil torch and vise come together for a brazing operation.
A pencil torch and vise come together for a brazing operation.
  • Dremel – A cheap rotary tool will make quick work of a lot of shaping tasks. Definitely saves time and there are some things that can’t be done economically without one. Also good for feeding an endless stream of cutting disks into to cut sheet stock without deforming it. Saves time on polishing too if you want to get fancy. Have to be careful not to waste too much time setting-up and forcing this tool to do the work. It’s often considerably underpowered compared to some sweat and hand files.
  • Power Drill and Bits – There is absolutely no reason not to have a decent power drill these days. Get a corded one if you can’t swing the money for a nicer model cordless. This will drill holes, sand, and occasionally act as a shitty lathe. Especially handy if you just want to bring something round into a tolerance for some sort of fit. Get a decent set of drill bits unless you hate yourself. I bought a 30 dollar set with decent coatings and have been replacing the individual bits with their higher quality counterparts as I burn through them. I’m currently on my third 1/8th inch bit.

    Let's be honest. The hobby of 3D printing doesn't really save any time.
    Let’s be honest. The hobby of 3D printing doesn’t really save any time.
  • Pencil Torch – Lastly a good quality torch or pencil torch does wonders. I burned through a few cheaper torches before I finally dropped a hundred dollars on a good quality Portasol. With a torch one can heat treat metals, solder, braze, and more. A person can cut plastics, weld plastics, and shrink heat shrink. It’s an essential tool.

For the rest I wouldn’t go nuts. I’d file them under, “buy as you need”. Of course there are things like screwdrivers etc. but this was intended for shaping operations, not general repair. I would recommend buying, not a tap and die set exactly, but picking a size of fastener (in my case, M3, M6, and M8) and buying the tap, die, and drill set for those.

In the end most prototyping, even today, ends up with a hacker having to still do some 19th century work to get it to fit. However, if you’ve ever seen a real watchmaker at work, you’ll know just how ridiculously far you can get on knowledge of metal backed up by skill with a file.

I know there are a lot of you out there with more and similar experience than I have with this sort of thing. At what point do you resort to modern tools? Any tasks that you found went faster the old-fashioned way? Any tools that I missed? Hand work isn’t a fading skill by any measure, but it’s easy to forget about it with 3D printers as cheap as they are. However, for any technical person it adds instant worth and a far deeper understanding of design and fabrication if you can do it by hand.

Maslow Brings The Wall Plotter Into The Woodshop

Hanging plotters, or two steppers controlling a dangling Sharpie marker on an XY plane, are nothing new to our community. But have you ever thought of trading out the Sharpie for a wood router bit and cutting through reasonably thick plywood sheets? That would give you a CNC machine capable of cutting out wood in essentially whatever dimensions you’d like, at reasonably low-cost. And that’s the idea behind [Bar]’s Maslow. It’s going to be a commercial product (we hope!), but it’s also entirely open source and indubitably DIYable.

[Bar] walks us through all of the design decisions in this video, which is a must-watch if you’re planning on building one of these yourself. Basically, [Bar] starts out like any of us would: waaaay over-engineering the thing. He starts out with a counterweight consisting of many bricks, heavy-duty roller chain, and the requisite ultra-beefy motors to haul that all around. At some point, he realized that there was actually very little sideways force placed on a sharp router bit turning very quickly. This freed up a lot of the design.

His current design only uses two bricks for counterweights, uses lighter chains, and seems to get the job done. There’s a bit of wobble in the pendulum, which he admits that he’s adjusted for in software. Motors with built-in encoders and gearing take care of positioning accurately. We haven’t dug deeply enough to see if there’s a mechanism to control the router’s plunge, which would be great to cut non-continuous lines, but first things first.

Taking the wall plotter into the woodshop is a brilliant idea, but we’re sure that there’s 99% perspiration in this design too. Thanks [Bar] for making it open! Best of luck with the Kickstarter. And thanks to [Darren] for the tip.

Making an Espresso Pot In the Machine Shop

[This Old Tony] was cleaning up his metal shop after his yearly flirtation with woodworking when he found himself hankering for a nice coffee. He was, however, completely without a coffee making apparatus. We imagine there was a hasty round of consulting with his inanimate friends [Optimus Prime] and [Stefan Gotteswinter Brush] before he decided the only logical option was to make his own.

So, he brought out two chunks of aluminum from somewhere in his shop, modeled up his plan in SolidWorks, and got to work.  It was designed to be a moka style espresso pot sized around both the size of stock he had, and three purchased parts: the gasket, funnel, and filter. The base and top were cut on a combination of lathe and mill. He had some good tips on working with deep thin walled parts. He also used his CNC to cut out some parts, like the lid and handle. The spout was interesting, as it was made by building up a glob of metal using a welder and then shaped afterward.

As usual the video is of [This Old Tony]’s exceptional quality. After quite a lot of work he rinsed out most of the metal chips and WD40, packed it with coffee, and put it on the stove. Success! It wasn’t long before the black stuff was bubbling into the top chamber ready for consumption.

Inventables Releases Improved X-Carve CNC Router

Introduced last year as an improvement on the very popular Shapeoko CNC router, the X-Carve by Inventables has grown to be a very well-respected machine in the community. It’s even better if you throw a DeWalt spindle on there, allowing you to cut almost everything that’s not steel. With a recent upgrade to the X-Carve, it’s even more capable, featuring the best mods and suggestions from the community that has grown up around this machine.

The newest iteration of the X-Carve features higher power drivers, better rigidity, and a heat sink for the spindle. That last item is an interesting bit of kit – routing takes time, and a 1¼HP motor will turn electricity into heat very effectively.

X-CarveIn addition to the 500mm square and 1000mmm square routers previously available, there’s a new, 750mm square machine available. All machines feature a new electronics box for the X-Carve, the X-Controller. This ‘brain box’ is a combined power supply, stepper driver, and motion controller built into a single box. The stepper drivers are able to supply 4A to a motor, is capable of 1/16 microstepping, and has connections for limit switches, spindle control speed, a Z probe, and outputs for vacuums or coolant systems. The underlying controller is based on grbl, making this brain box a very solid foundation for any 3-axis CNC build. The ‘brain box’ format seems to be the way the hobbyist CNC market is going, considering the whispers and rumors concerning Lulzbot selling their Taz6 brainbox independently from a 3D printer.

The new X-Carve is available now, with a fully-loaded 1000mm wide machine coming in at about $1400. That’s comparable to many other machines with the same volume, unlike the Chinese 3040 CNC machines, you don’t need to find an old laptop with a parallel port.

High-end Headphones Fixed with High-end CNC Machine

Warranty? We don’t need no stinking warranty! We’re hackers, and if you have access to a multi-million dollar CNC machine and 3D CAM software, you mill your own headphone replacement parts rather than accept a free handout from a manufacturer.

The headphones in question, Grado SR325s, are hand-built, high-end audiophile headphones, but [Huibert van Egmond] found that the gimbal holding the cups to the headband were loosening and falling out. He replicated the design of the original gimbal in CAM, generated the numeric code, and let his enormous Bridgeport milling machine loose on a big block of aluminum. The part was drilled and tapped on a small knee-mill, cut free from the backing material on a lathe, and bead-blasted to remove milling marks. A quick coat of spray paint – we’d have preferred powder coating or anodization – and the part was ready to go back on the headphones.

Sure, it’s overkill, but when you’ve got the tools, why not? And even a DIY CNC router could probably turn out a part like this – a lot slower, to be sure, but it’s still plausible.

Continue reading “High-end Headphones Fixed with High-end CNC Machine”

Impressive Junkyard CNC Made From Fancy Garbage

We’ll just come out and say it, [reboots] has friends with nice garbage. Sure, some of us have friends who are desperately trying to, “gift,” us a CRT monitor, hope dropping like a rock into their stomach when they realize they can’t escape the recycling fee.  [reboots] has friends who buy other people’s poorly thought out CNC projects and then gift him with the parts.

After dismantling the contraption he found himself with nice US and Japanese made linear motion components. However, he needed a CNC controller to drive it all. So he helped another friend clean out their garage and came away with a FlashCut CNC controller.

Now that he had a controller and the motion components whirring nicely, he really needed a frame to put it all in. We like to imagine that he was at a friend’s  barbeque having a beer. In one corner of the yard was an entire Boeing 747.  A mouldering scanning electron microscope with a tattered and faded blue tarp barely covering its delicate instrumentation sat in another corner. Countless tech treasures were scattered about in various states. It was then that he spotted a rusting gamma ray spectrometer in the corner that just happened to have the perfect, rigid, gantry frame for his CNC machine.

Of course, his friend obliged and gladly gave up the spectrometer. Now it was time to put all together. The gantry was set on a scavenged institutional door. The linear motion frames were bolted in place. Quite a few components had to be made, naturally, of scrap materials.

spindletest2Most people will start by using a handheld router for the spindle. The benefits are obvious: they’re inexpensive, easy to procure, and generally come with mounts. But, there are some definite downsides, one of the most glaring of which is the lack of true speed control.

Even routers that allow you to adjust the speed (a fairly common feature on new models) generally don’t actually regulate that speed. So, you end up with a handful of speed settings which aren’t even predictable under load. Furthermore, they usually rely on high RPMs to do their work. For those reasons, handheld woodworking routers aren’t the best choice for a mill that you intend to cut metal with.

[reboots] noticed this problem while building this machine and came up with an inexpensive way to build a speed-controlled spindle. His design uses a brushless DC motor, controlled through a hobby ESC (electronic speed control), which uses a belt to drive the spindle. The spindle itself is mounted using skateboard bearings, and ends in an E11 collet (suitable for light machining in aluminum).

With the ESC providing control of the brushless motor, he’s able to directly control the spindle speed via software. This means that spindle speeds can be changed with G-code, allowing for optimized feeds and speeds for different operations. The belt-drive increases torque while separating the motor from the spindle, which should keep things cool, and reduce rotating mass on the spindle itself. Now all [reboots] needs to do is add a DIY tool changer!

Much More Than a Desktop Mill: The DIY VMC Build

A VMC (vertical machining center) is essentially a CNC vertical milling machine on steroids. Many CNC mills are just manual milling machines that have been converted to CNC control. They work nicely, but have a number of drawbacks when it comes to real world CNC milling: manual tool changes, lack of chip collection, lack of coolant containment, and backlash issues (which a manual machinist normally compensates for).

These problems are solved with a VMC, which will usually have an automatic tool changer, and an enclosure to contain coolant and wash chips down into a collection pan. They are, however, very expensive, very big, and very heavy. Building one from scratch is a massive undertaking, but one which [Chris DePrisco] was brave enough to take on.

Continue reading “Much More Than a Desktop Mill: The DIY VMC Build”