HackBusting: Can you Fake a TV Remote with a Lighter and some Paper?

We recently published an article where someone apparently controlled their TV by simulating a remote with merely a lighter and a sheet of paper. The paper had a barcode like cutout for a supposed “Universal Standby Signal”. The video rightfully attracted a substantial crowd, some awestruck by its simplicity, others sceptical about its claims.

Coming from some generic “Viral Life Hack” production house, the characteristic blare of background music, more suited to an underground rave than a technical video, certainly did not do it any favours. As any moderately experienced campaigner would know, modern televisions and remotes have been carefully engineered  to prevent such mishaps. Many of us at Hackaday, were under the impression that it would take something slightly more sophisticated than a fluorescent-bodied lighter and a crisp sheet of A4 to deceive the system. So we tested it out. Our verdict? Unlikely, but not impossible. (And we’re pretty sure that the video is a fake either way.) But enough speculation, we’re here to do science.

Continue reading “HackBusting: Can you Fake a TV Remote with a Lighter and some Paper?”

Shmoocon 2017: Software Defined Radio for Terahertz Frequencies

Before Bluetooth, before the Internet of Things, and before network-connected everything, infrared was king. In the 90s, personal organizers, keyboards, Furbys, and critical infrastructure was built on infrared. Some of these devices are still around, hiding in plain sight. This means there’s a lot of opportunities for some very fun exploits. This was the focus of [Mike Ossmann] and [Dominic Spill]’s talk at this year’s Shmoocon, Exploring The Infrared World. What’s the hook? Using software-defined radio with terahertz frequencies.

[Dominic]’s infrared detector
Infrared communication hasn’t improved since the days of IrDA ports on laptops, and this means the hardware required to talk to these devices is exceptionally simple. The only thing you need is an IR phototransistor and a 4.7k resistor. This is enough to read signals, but overkill is the name of the game here leading to the development of the Gladiolus GreatFET neighbor. This add-on board for the GreatFET is effectively a software defined IR transceiver capable of playing with IrDA, 20 to 60 kHz IR remote control systems, and other less wholesome applications.

Demos are a necessity, but the world seems to have passed over IR in the last decade. That doesn’t mean there still aren’t interesting targets. A week before Shmoocon, [Mike Ossmann] put out the call on Twitter for a traffic light and the associated hardware. Yes, police cars and ambulances use infrared signaling to turn traffic lights green. You shouldn’t. You can, but you shouldn’t.

What was the takeaway from this talk? IR still exists, apparently. Yes, you can use it to send documents directly from your PalmPilot to a laser printer without any wires whatsoever. One of the more interesting applications for IR is an in-car wireless headphone unit that sends something almost, but not quite, like pulse coded audio over infrared. The demo that drew the most applause was an infrared device that changed traffic lights to green. The information to do that is freely available on the web, but you seriously don’t want to attempt that in the wild.

Hacked Television Uses No Power In Standby Mode

How much effort do you put into conserving energy throughout your daily routine? Diligence in keeping lights and appliances turned off are great steps, but those selfsame appliances likely still draw power when not in use. Seeing the potential to reduce energy wasted by TVs in standby mode, the [Electrical Energy Management Lab] team out of the University of Bristol have designed a television that uses no power in standby mode.

The feat is accomplished through the use of a chip designed to activate at currents as low as 20 picoamps.  It, and a series of five photodiodes, is mounted in a receiver which attaches to the TV. The receiver picks up the slight infrared pulse from the remote, inducing a slight current in the receiving photodiodes, providing enough power to the chip which in turn flips the switch to turn on the TV. A filter prevents ambient light from activating the receiver, and while the display appears to take a few seconds longer to turn on than an unmodified TV, that seems a fair trade off if you aren’t turning it on and off every few minutes.

Continue reading “Hacked Television Uses No Power In Standby Mode”

This Miniscule IR to HID Keyboard Hides in a Key Cap

Shards of silicon these days, they’re systematically taking what used to be rather complicated and making it dead simple in terms of both hardware and software. Take, for instance, this IR to HID Keyboard module. Plug it into a USB port, point your remote control at it, and you’re sending keyboard commands from across the room.

To do this cheaply and with a small footprint used to be the territory of bit-banging software hacks like V-USB, but recently the low-cost lines of microcontrollers that are anything but low-end have started speaking USB in hardware. It’s a brave new world.

In this case we’re talking about the PIC18F25J50 which is going to ring in at around three bucks in single quantity. The other silicon invited to the party is an IR receiver (which demodulates the 38 kHz carrier signal used by most IR remotes) with a regulator and four passives to round out the circuit. the board is completely single-sided with one jumper (although the IR receiver is through-hole so you don’t quite get out of it without drilling). All of this is squeezed into a space small enough to be covered by a single key cap — a nice touch to finish off the project.

[Suraj] built this as a FLIRC clone — a way to control your home-built HTPC from the sofa. Although we’re still rocking our own HTPC, it hasn’t been used as a front-end for many years. This project caught our attention for a different reason. We want to lay down a challenge for anyone who is attending SuperCon (or not attending and just want to show off their chops).

This is nearly the same chip as you’ll find on the SuperCon badge. That one is a PIC18LF25K50, and the board already has an IR receiver on it. Bring your PIC programmer and port this code from MikroC over to MPLAB X for the sibling that’s on the badge and you’ll get the hacking cred you’ve long deserved.

[via Embedded Lab]

Smartphone TV Remote Courtesy of Homekit and ESP8266

Good grief, this smartphone-to-TV remote really drives home how simple hardware projects have become in the last decade. We’re talking about a voltage regulator, IR LED, and ESP8266 to add TV control on your home network. The hardware part of the hack is a homemade two sided board that mates an ESP with a micro-USB port, a voltage regulator to step down fom 5 to 3.3 v, and an IR LED for transmitting TV codes.

Let’s sit back and recount our good fortunes that make this possible. USB is a standard and now is found on the back of most televisions — power source solved. Cheap WiFi-enabled microcontroller — check. Ubiquitous smartphones and established protocols to communicate with other devices on the network — absolutely. It’s an incredible time to be a hacker.

Television infrared remote codes are fairly well documented and easy to sniff using tools like Arduino — in fact the ESP IR firmware for this is built on [Ken Shirriff’s] Arduino IR library. The rest of the sketch makes it a barebones device on the LAN, waiting for a connection that sends “tvon” or “tvoff”. In this case it’s a Raspberry Pi acting as the Homekit server, but any number of protocols could be used for the same (MQTT anyone?).

Continue reading “Smartphone TV Remote Courtesy of Homekit and ESP8266”

Roomba Now Able to Hunt Arnold Schwarzenegger

Ever since the Roomba was invented, humanity has been one step closer to a Jetsons-style future with robots performing all of our tedious tasks for us. The platform is so ubiquitous and popular with the hardware hacking community that almost anything that could be put on a Roomba has been done already, with one major exception: a Roomba with heat vision. Thanks to [marcelvarallo], though, there’s now a Roomba with almost all of the capabilities of the Predator.

The Roomba isn’t just sporting an infrared camera, though. This Roomba comes fully equipped with a Raspberry Pi for wireless connectivity, audio in and out, video streaming from a webcam (and the FLiR infrared camera), and control over the motors. Everything is wired to the internal battery which allows for automatic recharging, but the impressive part of this build is that it’s all done in a non-destructive way so that the Roomba can be reverted back to a normal vacuum cleaner if the need arises.

If sweeping a just the right time the heat camera might be the key to the messy problem we discussed on Wednesday.

The only thing stopping this from hunting humans is the addition of some sort of weapons. Perhaps this sentry gun or maybe some exploding rope. And, if you don’t want your vacuum cleaner to turn into a weapon of mass destruction, maybe you could just turn yours into a DJ.

Infrared Targeting On a Small Scale

Sometimes, a person has a reason to track a target. A popular way to do this these days is with a camera, a computer, and software to analyze the video. But, that lends itself more to automated systems, like sentries. What if you want to be able to target something by “painting” it with a laser?

That’s exactly what [Jeremy Leaf] wanted to do, and the results are pretty impressive. He was able to track a .06 milliwatt laser at 2 meters. His design does this using three photodiodes in order to determine the position of a laser spot using triangulation.

Once the location of the laser spot has been determined, it can either simply be reported or it can be tracked. Tracking is achieved with a gimbal setup which updates quickly and accurately. Of course, it can only track the laser if the laser has something to be projected upon. If you need to track something in open 3D space, there are alternatives that would be better suited to the task.

Continue reading “Infrared Targeting On a Small Scale”