Make Flexible PCBs with Your 3D Printer

flexpcb

The last few years have seen great strides in budget printed circuit board manufacturing. These days you can have boards made in a week for only a few dollars a square inch. Flexible PCBs still tend to be rather expensive though. [Mikey77] is changing that by making flex circuits at home with his 3D printer. [Mikey77] utilized one of the properties of Ninjaflex Thermoplastic Elastomer (TPE) filament – it sticks to bare copper!

The TPE filament acts as an etch resist, similar to methods using laser printer toner. For a substrate, [Mikey77] lists 3 options:

.004″ thick “Scissor cut” copper clad board from Electronics Goldmine

.002″ thick pure copper polyester taffeta fabric from lessEMF.com

<.001″ Pyralux material from Adafruit, which is one of the materials used to make professional flex PCBs.

A bit of spray adhesive will hold the Flex PCB down on the printer’s bed. The only issue is convincing the printer to print a few thousandths of an inch higher than the actual bed level. Rather than change the home position on his Z axis, [Mikey77] used AutoDesk 123D to create 3D PCB designs. Each of his .stl files has a “spacer bar”, which sits at the bed level. The actual tracks to be printed are in the air a few thousandths of an inch above the bed – exactly the thickness of the substrate material. The printer prints the spacer bar on the bed, then raises its Z height and prints on the flexible PCB material. We’re sure that forcing the printer to print in mid-air like this would cause some printer software to throw errors, but the system worked for [Mikey77] and his Makerbot.

Once the designs have been printed, the boards are etched with standard etching solutions such as ferric chloride. Be careful though – these thin substrates can etch much faster than regular PCB.

Guitar Pedal Hack via Manufacturer’s Shortcut

modded guitar pedal

There seems to be no shortage of manufacturers that cut costs by using similar components across a wide range of products. This isn’t necessarily a bad thing though, since it makes it easier for someone with some know-how to quickly open up the product and figure out how to get more use out of it. [Lewin] noticed some peculiarities on the PCB of his EHX Screaming Bird guitar pedal, and used a manufacturer’s shortcut to turn this treble-boosting pedal into a flat booster.

Once [Lewin] removed the case, he noticed that there were some unpopulated pads on the PCB. Additionally, the potentiometer was labelled as 10k, but a 100k was actually installed. These were indications that something was awry, so after poking around on the internet, [Lewin] now believes that the same PCB was used to make at least three different effects pedals with similar internal structures.

The Screaming Bird pedal was a little harsh for [Lewin]‘s taste, so he changed out some capacitors on the board to get it closer to the flat booster. There are some other things that could be changed, but now he has a pedal that suits his needs much more appropriately, thanks to the manufacturer making only minor changes across a range of similar products. Historically, guitar pedals are pretty easy to modify, but it’s nice that the manufacturer of these has made it so much simpler!

The Joys Of Shipping From China

Trucks A few months ago, news of a new PCB fab service headed up by [Ian] over at Dangerous Prototypes leaked onto the Internet. It’s extremely cheap – $14 USD for a 5cm square board with free worldwide shipping. [Ian] admits the boards aren’t the greatest quality, that’s not the point; the site’s motto is simply, ‘No bull, just crappy PCBs.’

What began as an internal website to handle all of DP’s PCB orders was now on the Internet, and orders were flying in. At first, shipping a few dozen PCBs around the globe every week was easy, but since Dirty PCBs hit the big time, customers rightfully or not, started freaking out because of the oddities of Chinese shipping and logistics companies.

[Ian] is using Espeed Post for all their shipping, and if you’ve ever ordered anything from China off of Ebay, it’s possible you’ve had something shipped through Espeed before. Because of the oddities of shipping, and the fact that Shenzhen and Hong Kong are right next to each other, even the people at Dangerous Prototypes don’t know which countries your PCBs will go through on the trip from the fab house to your front door. This has caused much consternation with DirtyPCB customers that don’t seem to realize they’re getting custom PCBs for under two dollars a board, shipped to them across the world in a week for free. Some people’s children, huh?

Things get significantly, ahem, dirtier, when Chinese holidays are taken into account. China has a lot of them, and they’re long. They’re just wrapping up the National Day holiday, 10 days in the first week of October. Everyone is backlogged, and the China/Hong Kong border is the mess of trucks seen above.

If a holiday isn’t bad enough, the new President of China is cracking down on corruption. 500 officials were fired at the largest land border with Hong Kong, due in no small part to vans full of meth and tons of counterfeit currency. Every package leaving China is inspected individually, and shipping times have exploded.

To deal with this, Dangerous Prototypes has posted a big red warning on the dirtypcb site, but experience in dealing with people on the Internet tells them this won’t be a viable solution. They’re now dealing directly with DHL, and are apparently getting priority clearance through customs. It’s not fun, as DP will now have to figure out how to work with DHL’s API. It’s a lot of work and a lot of trouble, but DP still has a few tricks up their sleeve – they’re working on an online schematic entry and PCB layout site and the extremely interesting DirtyCables – custom cables shipped to your door.

The Hackaday Prize Semifinalist Update

There are only a few more days until The Hackaday Prize semifinalists need to get everything ready for the great culling of really awesome projects by our fabulous team of judges. Here are a few projects that were updated recently, but for all the updates you can check out all the entries hustling to get everything done in time.


Replacing really, really small parts

accThe NoteOn smartpen is a computer that fits inside a pen. Obviously, there are size limitations [Nick Ames] is dealing with, and when a component goes bad, that means board rework in some very cramped spaces. The latest problem was a defective accelerometer.

In a normal project, a little hot air and a pair of tweezers would be enough to remove the defective part and replace it. This is not the case with this smart pen. It’s a crowded layout, and 0402 resistors can easily disappear in a large solder glob.

[Nick] wrapped the closest parts to the defective accelerometer in Kapton tape. That seemed to be enough to shield it from his Aoyue 850 hot air gun. The new part was pre-tinned and placed back on the board with low air flow.

How to build a spectrometer

spec

The RamanPi Spectrometer is seeing a lot of development. The 3D printed optics mount (think about that for a second) took somewhere between 12 and 18 hours to print. Once that was done and the parts were cleaned up, the mirrors, diffraction grating, and linear CCD were mounted in the enclosure. Judging from the output of the linear CCD, [fl@C@] is getting some good data with just this simple setup.

Curing resin and building PCBs

uv[Mario], the guy behind OpenExposer, the combination SLA printer, PCB exposer, and laser harp is chugging right along. He finished his first test print with a tilted bed and he has a few ideas on how to expose PCBs on his machine.

You don’t need props to test a quadcopter

bladesGoliath, the gas-powered quadcopter, had a few problems earlier this month. During its first hover test a blade caught a belt and bad things happened. [Peter] is testing out a belt guard and tensioner only this time he’s using plywood cutouts instead of custom fiberglass blades. Those blades are a work of art all by themselves and take a long time to make; far too much effort went into them to break in a simple motor test.

SMT and Thru-Hole Desoldering

My introduction to electronic manufacturing was as a production technician at Pennsylvania Scale Company in Leola PA in the early 1980’s. I learned that to work on what I wanted to work on I had to get my assigned duties done by noon or thereabouts. The most important lesson I had learned as a TV repairman, other than not to chew on the high voltage cable, was to use your eyes first. I would take a box of bad PCB’s that were essentially 6502 based computers that could count and weigh, and first go through inspecting them; usually the contents were reduced 50% right off by doing this. Then it was a race to identify and fix the remaining units and to keep my pace up I had to do my own desoldering.

Desoldering with IR System

Desoldering with IR System

It worked like this; you could set units aside with instructions and the production people would at some point go through changing components etc. for you or you could desolder yourself. I was pretty good at hand de-soldering 28 and 40 pin chips using a venerable Soldapulit manual solder sucker (as they were known). But to really cook I would wait for a moment when the production de-soldering machine was available. There was one simple rule for using the desoldering station: clean it when done! Failure to do so would result in your access to the station being suspended and then you might also incur the “wrath of production” which was not limited to your lunch bag being found frozen solid or your chair soaked in defluxing chemicals.

[Read more...]

Circuit Printer Doubles as a Pick and Place

Squink PCB printer and Pick and Place

Prototyping circuits is still a pain. The typical process is to order your PCBs, await their arrival, hand assemble a board, and start testing. It’s time consuming, and typically takes at least a week to go from design to prototype.

The folks at BotFactory are working on fixing that with the Squink (Kickstarter warning). This device not only prints PCBs, but also functions as a pick and place. Rather than using solder, the device uses conductive glue to affix components to the substrate.

This process also allows for a wide range of substrates. Traditional FR4 works, but glass and flexible substrates can work too. They’re also working on using an insulating ink for multilayer boards.

While there are PCB printers out there, and the home etching process always works, building the board is only half the battle. Hand assembly using smaller components is slow, and is prone to mistakes. If this device is sufficiently accurate, it could let us easily prototype complex packages such as BGAs, which are usually a pain.

Of course it has its limitations. The minimum trace width is 10 mils, which is a bit large. Also at $2600, this is an expensive device to buy sight unseen. While it is a Kickstarter, it’d be nice to see an all in one device that can prototype circuits quickly and cheaply.

Joe Grand Talks Deconstructing Circuit Boards

With the exception of [Eric Evenchick], the Hackaday crew are safely back from Defcon and not missing in the desert. This means we can really start rolling out all the stuff we saw this weekend, beginning with an interview with [Joe Grand], creator of the JTAGulator, early member of l0pht, and generally awesome dude.

The focus of [Joe]‘s many talks this year was reverse engineering circuit boards. Most of these techniques involved fairly low-tech methods to peel apart circuit boards one layer at a time: sandpaper and milling machines are the simplest techniques, but [Joe] is also using some significantly more uncommon methods. Lapping machines get a mention, as do acoustic microscopy, CAT scans, and x-rays. [Joe]‘s Defcon talk isn’t up on the intertubes yet, but his BSides talk about techniques that didn’t work is available.

In case you forgot, [Joe] is also a judge for a little contest we’re running, and we asked what he’s looking for in a truly spaceworthy entry. [Joe]‘s looking for projects with a lot of effort put into them. Don’t get us wrong, project that require no effort can be extremely popular, but documentation is king. [Joe] thinks well documented projects are evidence project creators are building something because they want to build it, and not because they want to win a prize. That’s intrinsic motivation, kiddies. Learn it.

Follow

Get every new post delivered to your Inbox.

Join 98,062 other followers