THP Hacker Bio: nsted

 

thp-contestant-bio-nsted

Have you ever wanted to build a robot arm, or even a full robot, but were put off by the daunting task of making all of those articulations work? Moti could make that a lot easier. The project seeks to produce smart servo motors which can connect and communicate in many different ways. It’s a great idea, so we wanted to know more about the hacker behind the project. After the jump you’ll find [nsted's] answers to our slate of question for this week’s Hacker Bio.

[Read more...]

Step Right Up or Cower In Fear; the 7-Story Car-Juggling Robot Is Here

Seven story robot juggles three VW BeetlesSometimes we see a project that’s just as frightening as it is awesome. The Bug Juggler is a prime example of this phenomenon. A seven-story diesel-powered humanoid robot is one thing, but this one will pick up two VW Beetles, put one in its pocket, pick up a third, and juggle them. Yes, juggle them.

The Bug Juggler will be driven by a brave soul sitting in the head-cage and controlling him through haptic feedback connected to high-speed servo valves. A diesel engine will generate hydraulic pressure, and the mobility required for juggling the cars will come from hydraulic accumulators.

The project is in the capable hands of team members who have built special effects, a diesel/hydraulic vehicle for hauling huge sections of pipe, and mechanisms for Space Shuttle experiments. In order to attract investors for the full-scale version, they are building an 8-foot tall proof-of-concept arm assembly capable of tossing and catching a 250lb. mass.

If you prefer to see Beetles crushed, check out Stompy, the 18-foot rideable hexapod. Make the jump to see an animation of the full-scale Bug Juggler in action. Don’t know about you, but we wouldn’t stand quite so close to it without a helmet and some really good health insurance.

[Read more...]

Stubby, The Adorable And Easy To Build Hexapod

stubby

A while back, we had a sci-fi contest on Hackaday.io. Inspired by the replicators in Stargate SG-1, [The Big One] and a few other folk decided a remote-controlled hexapod would be a great build. The contest is long over, but that doesn’t mean development stopped. Now Stubby, the replicator-inspired hexapod is complete and he looks awesome.

The first two versions suffered from underpowered servos and complex mechanics. Third time’s the charm, and version three is a lightweight robot with pretty simple mechanics able to translate and rotate along the XYZ axes. Stubby only weights about 600 grams, batteries included, so he’s surprisingly nimble as well.

The frame of the hexapod is designed to be cut with a scroll saw, much to the chagrin of anyone without a CNC machine. There are three 9g servos per leg, all controlled with a custom board featuring an ATMega1284p and an XBee interface to an old Playstation controller.

Video of Stubby below, and of course all the sources and files are available on the project site.

[Read more...]

A Tiny Robot Family

tiny

Back in the late 80s and early 90s, a lot of young electronics hobbyists cut their teeth with BEAM robots – small robots made with logic chips and recycled walkmans that tore a page from papers on neural nets and the AI renaissance of the 80s. Twenty years later, a second AI renaissance never happened because a generation of genius programmers decided the best use of their mental faculties was to sell ads on the Internet. We got the Arduino, though, and the tiny robot family is a more than sufficient spiritual successor to the digital life of the old BEAM bots.

The tiny robot family is [shlonkin]‘s growing collection of small autonomous vehicles that perceive the world with sensors and act with different behaviors. They all contain an ATtiny85, a small battery, two motors, and at least one phototransistor and a LED. One robot has left and right eyes pointing down, and can act as a line follower. Another has a group of LEDs around its body, allowing it to signal other bots in all directions. The goal of the project is to create a whole series of these tiny robots capable of interacting with the environment and each other. Video of the line follower below.

[Read more...]

A Robot’s Favourite Pen

A test of various pens using a robot

Some people are very picky about their pens. Entire forums exist to discuss the topic of pen superiority. However, it comes down to a personal choice. Some people like gel while others prefer ballpoint.

[Jens] built a drawing robot that produces drawings like the one seen here. It uses several linkages connected to two stepper motors, which give fine control over the pen. With the robot working [Jens] set out to find the best pen for robotic drawing.

Seven pens were tested on the machine, each drawing the same pattern. [Jens] found that gel and rollerball pens work the best on the robot, and started examining the performance of each.

The pens all performed differently, but two winners were chosen to use in the machine. The Pentel Energel Deluxe RTX and the Pilot G-2 07 beat out the competition since they maintained good lines at high speeds.

If you’re looking to build a drawing robot, [Jens]‘ research should help you pick the best pen for your application. For inspiration, a video of the robot in action is waiting after the break.

[Read more...]

The Un-Digital Robotic Arm

556When you think of a robotic arm, you’re probably thinking about digital control, microcontrollers, motor drivers, and possibly a feedback loop. Anyone who was lucky enough to have an Armatron knows this isn’t the case, but you’d still be surprised at how minimal a robotic arm can be.

[viswesh713] built a servo-powered robotic arm without a microcontroller, and with some interpretations, no digital control at all. Servos are controlled by PWM signals, with a 1 ms pulse rotating the shaft one way and a 2 ms pulse rotating the shaft the other way. What’s a cheap, popular chip that can easily be configured as a timer? Yep, the venerable 555.

The robotic arm is actually configured more like a Waldo with a master slave configuration. [viswesh] built a second arm with pots at the hinges, with the resistance of the pots controlling the signal output from a 556 dual timer chip. It’s extremely clever, at least until you realize this is how very early robotic actuators were controlled. Still, an impressive display of what can be done with a simple 555. Videos below.

[Read more...]

Canadian Space Robot Will Repair Itself

The video above shows an animation of what the Canadian Space Agency hopes will be the first successful self-repair of the Mobile Servicing System aboard the ISS. The mobile servicing system is basically a group of several complicated robots that can either perform complicated tasks on their own, or be combined into a larger unit to extend the dexterity of the system as a whole.

The most recent addition to the servicing system is the Special Purpose Dexterous Manipulator, otherwise known as Dextre. Dextre is somewhat reminiscent of a human torso with two enormous arms. It is just one of the Canadian Space Agency’s contributions to the station. It was installed on the station in 2008 to perform activities that would normally require space walks. Dextre’s very first official assignment was successfully completed in 2011 when the robot was used to unpack two pieces for the Kounotori 2 transfer vehicle while the human crew on board the ISS was sleeping.

Dextre is constructed in such a way that it can be grabbed by the Canadarm2 robot and moved to various work sites around the Space Station. Dextre can then operate from the maintenance site on its own while the Canadarm2 can be used for other functions. Dextre can also be operated while mounted to the end of Canadarm2, essentially combining the two robots into one bigger and more dexterous robot.

One of the more critical camera’s on the Canadarm2 has started transmitting hazy images. To fix it, the Canadarm2 will grab onto Dextre, forming a sort of “super robot”. Dextre will then be positioned in such a way that it can remove the faulty camera. The hazy camera will then be mounted to the mobile base component of the Mobile Servicing System. This will give the ISS crew a new vantage point of a less critical location. The station’s human crew will then place a new camera module in Japan’s Kibo module’s transfer airlock. Dextre will be able to reach this new camera and then mount it on the Canadarm2 to replace the original faulty unit. If successful, this mission will prove that the Mobile Servicing System has the capability to repair itself under certain conditions, opening the door for further self-repair missions in the future.