DOOM Runs On Husqvarna’s Robot Lawnmower

DOOM has been ported to a lot of platforms — to the point where the joke is kind of getting old now. Evidence of that is available in the fact that brands are now getting in on the action. Yes, as reported by The Register, you can now officially play DOOM on your Husqvarna’s Automower.

Nice, right? Speedrun it on this interface.

We had to check if this was some kind of joke; indeed, the April release date had us looking at the calendar. However, it seems to be legit. You’ll be able to download a version of DOOM via the Husqvarna Automower Connect App, and play it on the tiny screen of your robot lawnmower. Hilariously, due to the size of the game, Husqvarna notes it “may take up to a week before the game is playable” due to the time it takes the mower to download it, along with a necessary software update.

Controls are simple. The knob on the robot is used for turning left and right, while pressing start lets you run forward. Firing weapons is done by pressing the control knob.

We’ve seen some quality ports before, including an arcade port that was particularly cool. Really, though, at this stage, you have to work harder to impress. Show us DOOM running on a Minuteman launch console or something. Continue reading DOOM Runs On Husqvarna’s Robot Lawnmower”

Compact Cycloidal Drive Lives Inside This Custom Brushless Motor

With the popularity of robot dogs, many people have gotten on the bandwagon and tried building DIY versions. Most of them end up attaching a gearbox to an off-the-shelf brushless motor and call it a day. Not everyone goes that way, though, which is why this internal cycloidal drive actuator caught our eye.

Taking design cues from the MIT Mini Cheetah, [Aaed Musa] approached his actuator from the inside out, literally. His 3D printed cycloidal gearbox is designed to fit inside the stator of a BLDC motor. And not just any BLDC motor, but one built mostly from scratch using a hand-wound — and unwound, and wound again — stator along with a rotor that started as a printed part but was eventually machined from steel. Apart from its fixed ring, the cycloidal drive was mostly 3D printed, with everything fitting nicely inside the stator.

The video below shows the design and assembly process as well as testing of the finished drive. It seems to do really well with speed and positional accuracy, and it delivers a substantial amount of torque. Maybe a little too much, though; testing it with a heavy weight on the end of an arm got the stator coils hot enough to warp the printed parts within. But no matter; this was only a prototype after all. [Aaed] says improvements are in the works, including replacing all the plastic parts with metal ones.

Need a little background on cycloidal drives? They’re pretty cool.

Continue reading “Compact Cycloidal Drive Lives Inside This Custom Brushless Motor”

Lawny Five Keeps Lawn Mowed, Snow Plowed

Although there’s been considerable excitement over the past half century of a Jetsons-like robotic future, outside of a few niche uses of our day-to-day lives there hasn’t been much in the way of robotic assistants coming to ease our physical household workloads. Sure, robots exist in manufacturing and other industrial settings, but the vast majority of us won’t see a robotic revolution unless we make it for ourselves. To that end, [Jim] has begun construction of a robot that can at least mow his lawn and eventually plow his driveway, among other potential tasks.

The robot, called the Lawny Five, is a tracked vehicle currently under remote control but with a planned autonomous capability. The frame includes a set of caster wheels at the front to take advantage of the differential steering of the tracks, and between everything is where the mower, plow, or other tool can sit. The attachment system is based on a 2″ receiver hitch, allowing the robot to eventually change tools at will while still preserving the usefulness of the tools in their original state. The robotic platform has been tested with the mower on a wet lawn with a 20° slope and showed no signs of struggle (and didn’t damage the grass) so it’s ready to take on more challenging tasks now as well.

With the core of the build out of the way, [Jim] is well on his way to a robotic lawnmower and potentially even an autonomous one, not to mention one with interchangeable tools that he hopes will be put to work in other ways like parking his boat in a small space by his house. For those maintaining a piece of land a little more involved than suburban turfgrass, there are other robotic platforms capable of helping out farmers with things like planting, watering, and weeding.

Continue reading “Lawny Five Keeps Lawn Mowed, Snow Plowed”

Avocado-Shaped Robot Makes Its Way Through The Rainforest

When you think of a robot getting around, you probably think of something on wheels or tracks. Maybe you think about a bipedal walking robot, more common in science fiction than our daily lives. In any case, researchers went way outside the norm when they built an avocado-shaped robot for exploring the rainforest.

The robot is the work of doctoral students at ETH Zurich, working with the Swiss Federal Institute for Forest, Snow, and Landscape research. The design is optimized for navigating the canopy of the rainforest, where a lot of the action is. Traditional methods of locomotion are largely useless up high in the trees, so another method was needed.

The avocado robot is instead tethered to a cable which is affixed to a high branch on a tree, or even potentially a drone flying above. The robot then uses a winch to move up and down as needed.  A pair of ducted fans built into the body provide the thrust necessary to rotate and pivot around branches or other obstacles as it descends. It also packs a camera onboard to help it navigate the environment autonomously.

It’s an oddball design, but it’s easy to see how this design makes sense for navigating the difficult environment of a dense forest canopy. Sometimes, intractable problems require creative solutions. Continue reading “Avocado-Shaped Robot Makes Its Way Through The Rainforest”

Robot Can Read Braille Much Faster Than Humans With New Sensor

Braille is a method of physical writing used to allow humans to read by touch — most commonly used as a substitute for printed text by those who may be visually impaired. Both displaying Braille and reading it is difficult to do with machines, but there has been a development in the latter area. A research team has trained a robot to read Braille at a speed far exceeding humans.

The robot was developed by a team at the University of Cambridge. Rather than trying to read Braille by touch, it instead uses a camera and an image recognition algorithm to do the job. Their solution is a bit ironic in a way, given the purpose Braille was created for. The robot can quickly sweep across a Braille display, working at a rate of up to 315 words per minute at 87% accuracy. That’s roughly twice as fast as a human reading Braille, with a similar level of accuracy. Some nifty de-blurring algorithms were needed to achieve this speed from the camera’s video feed.

We’ve also seen some impressive development on the other side of all those little bumps, with two Braille devices taking home awards during the final Hackaday Prize in 2023.
Continue reading “Robot Can Read Braille Much Faster Than Humans With New Sensor”

Wearable Robot Makes Mountain Climbing A Breeze For Seniors

You know, it’s just not fair. It seems that even if we stay active, age will eventually get the better of our muscles, robbing them of strength and our bodies of mobility. Canes and walkers do not provide additional strength, just support and reassurance in a treacherous landscape. What people could really benefit from are wearable robots that are able to compensate for a lack of muscle strength.

[Dr. Lee Jongwon] of the Korea Institute of Science and Technology has developed this very thing. MOONWALK-Omni is designed to “actively support leg strength in any direction”, and make one feel like they are walking on the moon. In order to test the wearable robot, [Dr. Jongwon] invited senior citizens to climb Korea’s Mount Yeongbong, which is some 604 meters (1980 feet) above sea level.

The robot weighs just 2 kg (about 4.5 lbs) and can be donned independently by the average adult in under ten seconds. There are four high-powered but ultra lightweight actuators on either side of the pelvis that aid balance and boost leg strength by up to 30%. This is all designed to increase propulsion.

An AI system works to analyze the wearer’s gait in real time in order to provide up-to-the-second effective muscle support in many different environments. One wearer, a formerly active mountain climber, reported feeling 10-20 years younger when reaching the top of Mount Yeongbong.

It’s quite interesting to see mobility robots outside of the simplicity of the rehabilitation setting. We have to wonder about the battery life. Will everyone over 65 be wearing these someday? We can only hope they become so affordable. In the meantime, here’s a wearable robot that travels all over your person for better telemetry.

Flat Earth Theatre presents "R.U.R." by Karel Capek. January 23 - 31, 2009. Featuring Michael Wayne Smith, Karen Hart, Valerie Daum, Jeff Tidwell, Kevin Kordis, James Rossi, Bill Conley, Justus Perry, and Amy Lehrmitt. Directed by Jake Scaltreto. Arsenal Center for the Arts, Watertown.

Robot: You Keep Using That Word But It Doesn’t Mean What You Think It Means

The flute player automaton by Innocenzo Manzetti (1840)
The flute player automaton by Innocenzo Manzetti (1840)

With many words which are commonly used in everyday vocabulary, we are certain that we have a solid grasp of what they do and do not mean, but is this really true? Take the word ‘robot’ for example, which is more commonly used wrongly rather than correctly when going by the definition of the person who coined it: [Karel Čapek]. It was the year 1920 when his play Rossumovi Univerzální Roboti was introduced to the world, which soon saw itself translated and performed around the world, with the English-speaking world knowing it as R.U.R.: Rossum’s Universal Robots.

Up till then, the concept of a relatively self-operating machine was known as an automaton, as introduced by the Ancient Greeks, with the term ‘android’ being introduced as early as the 18th century to mean automatons that have a human-like appearance, but are still mechanical contraptions. When [Čapek] wrote his play, he did not intend to have non-human characters that were like these androids, but rather pure artificial life: biochemical systems much like humans, using similar biochemical principles as proteins, enzymes, hormones and vitamins, assembled from organic matter like humans. These non-human characters he called ‘roboti’, from Old Czech ‘robot’ (robota: “drudgery, servitude”), who looked human, but lacked a ‘soul’.

Despite this intent, the run-away success of R.U.R. led to anything android- and automaton-like being referred to as a ‘robot’, which he lamented in a 1935 column in Lidové Noviny. Rather than whirring and clunking pieces of machinery being called ‘automatons’ and ‘androids’ as they had been for hundreds of years, now his vision of artificial life had effectively been wiped out. Despite this, to this day we can still see the traces of the proper terms, for example when we talk about ‘automation’, which is where automatons (‘industrial robots’) come into play, like the industrial looms and kin that heralded the Industrial Revolution.

(Heading image: Performance of R.U.R. by Flat Earth Theatre, showing the mixing of robot ingredients)