Openhand Combines 3D Printing with Urethane Casting

Yale University brings us quite a treat with their Openhand Project.

If you’ve ever operated a robotic arm, you know that one of the most cumbersome parts is always the end effector. It will quickly make you realize what an amazing work of engineering the human hand really is, and what a poor intimation a simple open-close gripper ends up being.

[Yale] is working to bring tendon-driven robotic hands to the masses with an interesting technique of combining 3D printing and resin/urethane casting. Known as Hybrid Deposition Manufacturing (HDM), it allows the team to 3D print robotic fingers that also contain the mold for finger pads and joints, all built right into the 3D part.  The tendon-driven fingers allow for a very simple design that are not only easy to make, but have a low parts count as well. Because of the human-like tendons, the fingers naturally curl around the object, distributing it’s force much more evenly and naturally, much like a human hand would. In the videos after the break, you can see the building process, as well as the hand in action.

Best news is that it’s all open source. They also include some python libraries so you can customize the CAD files fit your needs.

Continue reading “Openhand Combines 3D Printing with Urethane Casting”

Whiteboard Clock Draws the Time

[Maurice] recently built a clock that draws the time (Google Doc) on a white board. We’ve seen plenty of clock hacks in the past, and even a very similar one. It’s always fun to see the different creative solutions people can come up with to solve the same problem.

This device runs on a PIC16F1454 microcontroller. The code for the project is available on GitHub. The micro is also connected to a 433MHz receiver. This allows a PC to keep track of the time, instead of having to include a real-time clock in the circuit. The USB connector is only used for power. All of the mounting pieces were designed in OpenSCAD and printed on a 3D printer. Two servos control the drawing arms. A third servo can raise and lower the marker to the whiteboard. This also has the added benefit of being able to place the marker tip inside of an eraser head. That way the same two servos can also erase the writing.

The communication protocol for this systems is interesting. The transmitter shows up on [Maurice’s] PC as a modem. All he needs to do to update the time is “echo 12:00 > /dev/whiteboard”. In this case, the command is run by a cron job every 5 minutes. This makes it easy to tweak the rate at which the time updates on the whiteboard. All communication is done one-way. The drawing circuit will verify the checksum each time it receives a message. If the check fails, the circuit simply waits for another message. The computer transmits the message multiple times, just in case there is a problem during transmission.

Caption CERN Contest Turns out Big Brains and Comic Brilliance

Week 1 of Hackaday’s Caption CERN Contest is complete. We have to say that the Hackaday.io users outdid themselves with funny captions but we also helped CERN add meaning to one of their orphan images. First a few of our favorite captions:

The Funnies:

If you adjust that scope again, when I haven’t touched the controls, I’m donating you to a city college. – [Johnny B. Goode]

SAFTEY FIRST – The proper way to test a 6kv power supply for ripple on the output. – [milestogoh]

Dr. Otto Gunther Octavius – R&D some years before the accident. – [jlbrian7]

The prize though, goes to Hackaday commenting superstar [DainBramage], who proved he knows us all too well with his Portal inspired caption:

Here we see Doug Rattmann, one of Aperture’s best and brightest, perfecting our neurotoxin prior to delivery.

Congrats [DainBramage], enjoy your shirt from The Hackaday Store!

The Meaning of the Image:

8106409Funny captions weren’t the only thing in the comments though – the image tickled [jlbrian7’s] memory and led to a link for CERN Love. A four-year old blog entry about robots at CERN turned out to be the key to unraveling the mystery of this captionless photo. The image depicts [Robert Horne] working with a prototype of the MANTIS system. MANTIS was a teleoperation manipulator system created to work in sections of the CERN facility which were unsafe for humans due to high levels of radioactivity. The MANTIS story is an epic hack itself, so keep your eyes peeled for a future article covering it! We’ve submitted the information to CERN, and we’re giving [jlbrian7] a T-shirt as well for his contribution to finding the actual caption for this image.

Get Started on Next Week:

The image for week 2 is already up, so head over and see for yourself. We’re eager for your clever captions. Ideally we can also figure out the backstory for each week’s randomly chosen image.

Cute Tiny Robot Gets a Pair of Hacked Eyes

One day while at our poor, poor Radio Shack, [davidhend] purchased a little 6-legged walking robot. It came with an infrared remote that allowed a user to control its movements from afar. After a few minutes of making the robot walk around [davidhend] got bored and decided it would be a great toy to hack.

His plan was to make the robot autonomous and able to avoid obstacles. To start off, the robot was taken apart enough to expose the circuit board. There he found a ST1155A bi-directional motor driver that was controlled by an on-board microcontroller. After checking out the ST1155A data sheet, [davidhend] thought he would be able to drive it with an Arduino. So, out came the soldering iron and all the unnecessary components were removed from the original circuit board.

An off the shelf PING))) sensor was mounted on the front of the robot and is responsible for detecting obstacles. That information is then sent back to the Arduino Nano which controls the motor driver to make the robot back up, turn and then start walking straight again until another obstacle is detected. [davidhend] made his Arduino Code (.zip file) available to anyone who wants to make a similar project. Check out the video after the break!

Oh, and if you plan to run down to the Shack to pick up a robot of your own you better do it like right now.

Continue reading “Cute Tiny Robot Gets a Pair of Hacked Eyes”

ANUBIS, A Natural User Bot Interface System

[Matt], [Andrew], [Noah], and [Tim] have a pretty interesting build for their capstone project at Ohio Northern University. They’re using a Microsoft Kinect, and a Leap Motion to create a natural user interface for controlling humanoid robots.

The robot the team is using for this project is a tracked humanoid robot they’ve affectionately come to call Johnny Five.  Johnny takes commands from a computer, Kinect, and Leap motion to move the chassis, arm, and gripper around in a way that’s somewhat natural, and surely a lot easier than controlling a humanoid robot with a keyboard.

The team has also released all their software onto Github under an open source license. You can grab that over on the Gits, or take a look at some of the pics and videos from the Columbus Mini Maker Faire.

Hackaday Links: January 11, 2015

Listening tests reveal significant sound quality differences between various digital music storage technologies. Finally the audiophile press is tackling the important questions. This listening test looks at the difference between two four-bay NAS boxes, with one making the piano on Scherzo and Trio from Penguin Café Orchestra’s Union Cafe sound more Steinway-like, while another NAS makes it sound more like a Bosendörfer. Yes, your choice of digital storage medium can change the timbre of a piano. Another gem: “Additionally, the two units also had different processor architectures, which might also affect perceived audible differences.” There must be a corollary to Poe’s Law when it comes to audiophiles…

[10p6] has begun a project that can play every old Atari cartridge. Right now it’s just a few bits of plastic that fits every non-Jaguar Atari cartridge, but it’s a start.

The Android IMSI-Catcher Detector. You’ve heard about Stingrays, devices used by law enforcement that are basically fake cell towers. These Stingrays downgrade or disable the encryption present in all cellphones, allowing anyone, with or without a warrant, to listen in on any cell phone conversation. Now there’s an effort to detect these Stingrays. It’s open source, and they’re looking for volunteers.

[Rob] sent in something that’s the perfect application of projection mapping. It’s called Face Hacking, and it’s pretty much just a motion capture systems, a few projectors, a whole lot of CG work, and just a tiny bit of dubstep. It look cool, but we’re wondering what the applications would be. Theatre or some sort of performance art is the best I can come up with.

A while ago, [4ndreas] saw a 3D printed industrial robot arm. He contacted the guy for the files, but nothing came of that. [4ndreas] did what anyone should do – made his own 3D printable industrial robot arm. The main motors are NEMA 17, and printing this will take a long time. Still, it looks really, really cool.

Ask Hackaday: A Robot’s Black Market Shopping Spree

It was bad when kids first started running up cell phone bills with excessive text messaging. Now we’re living in an age where our robots can go off and binge shop on the Silk Road with our hard earned bitcoins. What’s this world coming to? (_sarcasm;)

For their project ‘Random Darknet Shopper’, Swiss artists [Carmen Weisskopf] and [Domagoj Smoljo] developed a computer program that was given 100 dollars in bitcoins and granted permission to lurk on the dark inter-ether and make purchases at its own digression. Once a week, the AI would carrying out a transaction and have the spoils sent back home to its parents in Switzerland. As the random items trickled in, they were photographed and put on display as part of their exhibition, ‘The Darknet. From Memes to Onionland’ at Kunst Halle St. Gallen. The trove of random purchases they received aren’t all illegal, but they will all most definitely get you thinking… which is the point of course. They include everything from a benign Lord of the Rings audio book collection to a knock-off Hungarian passport, as well as the things you’d expect from the black market, like baggies of ecstasy and a stolen Visa credit card. The project is meant to question current sanctions on trade and investigate the world’s reaction to those limitations. In spite of dabbling in a world of questionable ethics and hazy legitimacy, the artists note that of all the purchases made, not a single one of them turned out to be a scam.

Though [Weisskopf] and [Smoljo] aren’t worried about being persecuted for illegal activity, as Swiss law protects their right to freely express ideas publicly through art, the implications behind their exhibition did raise some questions along those lines. If your robot goes out and buys a bounty of crack on its own accord and then gives it to its owner, who is liable for having purchased the crack?

If a collection of code (we’ll loosely use the term AI here) is autonomous, acting independent of its creator’s control, should the creator still be held accountable for their creation’s intent? If the answer is ‘no’ and the AI is responsible for the repercussions, then we’re entering a time when its necessary to address AI as separate liable entities. However, if you can blame something on an AI, this suggests that it in some way has rights…

Before I get ahead of myself though, this whole notion circulates around the idea of intent. Can we assign an artificial form of life with the capacity to have intent?