Retro Gaming With Retro Joysticks

One of the biggest reasons for playing older video games on original hardware is that emulators and modern controllers can’t replicate the exact feel of how those games would have been originally experienced. This is true of old PC games as well, so if you want to use your original Sidewinder steering wheel or antique Logitech joystick, you’ll need something like [Necroware]’s GamePort adapter to get them to communicate with modern hardware.

In a time before USB was the standard, the way to connect controllers to PCs was through the GamePort, typically found on the sound card. This has long since disappeared from modern controllers, so the USB interface [Necroware] built relies on an Arduino to do the translating. Specifically, the adapter is designed as a generic adapter for several different analog joysticks, and a series of DIP switches on the adapter select the appropriate mode. Check it out in the video after the break. The adapter is also capable of automatically calibrating the joysticks, which is necessary as the passive components in the controllers often don’t behave the same way now as they did when they were new.

Plenty of us have joysticks and steering wheels from this era stored away somewhere, so if you want to experience Flight Simulator 5.0 like it would have been experienced in 1993, all it takes is an Arduino. And, if you want to run these programs on bare metal rather than in an emulator, it is actually possible to build a new Intel 486 gaming PC, which operates almost exactly like a PC from the 90s would have.

Continue reading “Retro Gaming With Retro Joysticks”

Rubber Tyres Before There Were Tyres

Sometimes there is pleasure in watching an expert demonstrating his craft, particularly so when the craft is unusual or disappearing. A video came our way of just such a thing, and it’s of a craft so rare that it’s possible few of us will have considered it. We’re used to buying tyres for our motor vehicles that come pre-made in a mould for the size of our wheels, but how many of us have considered where the origins of the rubber tyre lie? How did a 19th-century horse-drawn buggy get its tyres? [EngelsCoachShop] take us through the process, putting rubber on a set of wooden carriage wheels.

These wheels would originally have had iron rims, that must have provided a jarring ride on cobbled roads of the day. English coach-builders of the mid 19th century were the first to fit solid rubber tyres, and it’s this type of tyre that’s being fitted in the video. Instead of the rubber ring we might expect the tyre is cut from a length of vulcanised rubber extrusion with a significant overlap, then a pair of high-tensile wires are fed through holes in the extrusion. The impressive part is the jig for creating the tyre, in which the rubber is compressed to a tight fit on the wheel before the wires are cut and their ends brazed together. Once the wheel is released from the jig  the compressed tyre expands to the point at which its ends meet, making a perfect circular tyre held tightly on the rim. Few of us will ever see this for real, but we’re privileged to see it on the screen.

We may not deal with wooden wheels very often, but this isn’t the first set we’ve seen.

Continue reading “Rubber Tyres Before There Were Tyres”

IBM Cheese Cutter Restoration

For a while now, Mac Pro towers have had the nickname “cheese grater” because of their superficial resemblance to this kitchen appliance. Apple has only been a company since the 70s, though, and is much newer than one of its historic rivals, IBM. In fact, IBM is old enough to have made actual cheese-related computers as far back as the 1910s, and [Hand Tool Rescue] recently obtained one of these antique machines for a complete restoration.

The tool arrived to the restoration workshop in a state so poor that it was difficult to tell what many of the parts on the machine did except for the large cleaver at the top. The build starts with a teardown to its individual parts, cleaning and restoring them to their original luster, machining new ones where needed, and then putting it all back together. The real mystery of this build was what the levers on the underside of the machine were supposed to do, but after the refurbishment it was discovered that these are the way that portions the cheese wheel would be accurately sized and priced before a cut was made.

By placing a section of a wheel of cheese on the machine and inputting its original weight with one of the levers, the second lever is adjusted to the weight of cheese that the customer requested, which rotates the wheel of cheese to the correct position before a cut is made. To us who are spoiled with a world full of electronic devices, a mechanical computer like this seems almost magical, especially with how accurate it is, but if your business in the 1910s involved cheese, this would have been quite normal. In fact, it would be 50 more years before IBM created the machines that they’re more commonly known for.

Thanks to [Jasper Jans] for the tip!

Continue reading “IBM Cheese Cutter Restoration”

3D Printing Omni-Balls For Robot Locomotion

Wheels are all well and good for getting around, but they only tend to rotate about a single axis. Omni-wheels exist, but they’re still a little too pedestrian for [James Bruton]. His latest project involved 3D printing custom omni-balls which roll in all directions. (Video, embedded below.)

The omniball concept comes from earlier work by Osaka University, which also produced a treaded tank-like vehicle by the name OmniCrawler as well. The spherical design, fitted with an axle and casters as well, allows rotation in multiple directions, allowing for a platform fitted with such omni-balls to easily rotate and translate in all directions.

[James] set about creating his own version of the design, which relies on grippy TPU filament for grip pads to give the 3D printed hemispheres some much needed grip. There’s also bearings inside to allow for the relative rotation between the hemispheres and the internal castor, necessary to allow the wheels to move smoothly when sitting on either pole of the hemispheres. Skate bearings were then used to assemble three of the omni-balls onto a single platform, which demonstrated the ability of the balls to roll smoothly in all directions.

While it’s just a demonstration of the basic idea for now, we can imagine these balls being used to great effect for a robot platform that needs to navigate in tight spaces on smooth surfaces with ease. The mechanical complexity of the omni-balls probably negates their effective use in dirtier offroad contexts, however.

We’ve seen [James]’s work before too – such as his compliant leg design for walking robots, and his active gyroscope balancer last week. When does [James] sleep?

Continue reading “3D Printing Omni-Balls For Robot Locomotion”

Hamster Goes On Virtual Journey

Hamsters are great pets, especially for those with limited space or other resources. They are fun playful animals that are fairly easy to keep, and are entertaining to boot. [Kim]’s hamster, [Mr. Fluffbutt], certainly fits this mold as well but [Kim] wanted something a little beyond the confines of the habitat and exercise wheel and decided to send him on a virtual journey every time he goes for a run.

The virtual hamster journey is built on an ESP32 microcontroller which monitors the revolutions of the hamster wheel via a hall effect sensor and magnet. It then extrapolates the distance the hamster has run and sends the data to a Raspberry Pi which hosts a MQTT and Node.js server. From there, it maps out an equivalent route according to a predefined GPX route and updates that information live. The hamster follows the route, in effect, every time it runs on the wheel. [Mr Fluffbutt] has made it from the Netherlands to southeastern Germany so far, well on his way to his ancestral home of Syria.

This project is a great way to add a sort of augmented reality to a pet hamster, in a similar way that we’ve seen self-driving fish tanks. Adding a Google Streetview monitor to the hamster habitat would be an interesting addition as well, but for now we’re satisfied seeing the incredible journey that [Mr Fluffbutt] has been on so far.

3D Printed Wobbly Wheels Put Through Their Paces

When we talk about wheels, the vast majority of the time we’re talking about ho-hum cylindrical rollers as seen on all manner of human conveyances. However, there are all manner of wild and wacky shapes that roll, and having had some experience with them, [Maker’s Muse] decided to take a shot at having a robot drive on them. (Video, embedded below.)

The benefit of a 3D printer is that it makes producing these parts with strange geometries a cinch. The video shows a variety of designs, from the wobbly “Nightshades” to the entertaining “Prongle” wheels being put through a variety of tests. In an attempt to equalise the playing field, each design was matched in its surface area so as not to artificially bias the results.

While the wobbly designs look strange, they also come with some benefits over simple disc wheels, providing extra traction on both carpet and sand. Particularly impressive was the performance of the 8-spoke wheels on the beach, though as this design mimics real-world sand tyres, we’re not surprised at the results. We’ve seen similar 3D printed parts do the job for driving on water, too.

Continue reading “3D Printed Wobbly Wheels Put Through Their Paces”

One Wheel Is All We Need To Roll Into Better Multirotor Efficiency

Multirotor aircraft enjoy many intrinsic advantages, but as machines that fight gravity with brute force, energy efficiency is not considered among them. In the interest of stretching range, several air-ground hybrid designs have been explored. Flying cars, basically, to run on the ground when it isn’t strictly necessary to be airborne. But they all share the same challenge: components that make a car work well on the ground are range-sapping dead weight while in the air. [Youming Qin et al.] explored cutting that dead weight as much as possible and came up with Hybrid Aerial-Ground Locomotion with a Single Passive Wheel.

As the paper’s title made clear, they went full minimalist with this design. Gone are the driveshaft, brakes, steering, even other wheels. All that remained is a single unpowered wheel bolted to the bottom of their dual-rotor flying machine. Minimizing the impact on flight characteristics is great, but how would that work on the ground? As a tradeoff, these rotors have to keep spinning even while in “ground mode”. They are responsible for keeping the machine upright, and they also have to handle tasks like steering. These and other control algorithm problems had to be sorted out before evaluating whether such a compromised ground vehicle is worth the trouble.

Happily, the result is a resounding “yes”. Even though the rotors have to continue running to do different jobs while on the ground, that was still far less effort than hovering in the air. Power consumption measurements indicate savings of up to 77%, and there are a lot of potential venues for tuning still awaiting future exploration. Among them is to better understand interaction with ground effect, which is something we’ve seen enable novel designs. This isn’t exactly the flying car we were promised, but its development will still be interesting to watch among all the other neat ideas under development to keep multirotors in the air longer.

[IROS 2020 Presentation video (duration 10:49) requires no-cost registration, available until at least Nov. 25th 2020. Forty-two second summary embedded below]

Continue reading “One Wheel Is All We Need To Roll Into Better Multirotor Efficiency”