Marketing And Selling Hardware Hack Chat

Join us Wednesday at noon Pacific time for the Marketing and Selling Hardware Hack Chat with Shawn Hymel!

It may not be every hardware hacker’s dream, but a fair number of us harbor fantasies of thinking up the Next Big Thing and kissing the day job goodbye forever. It’s an understandable dream and a laudable goal, but as they say, a goal is a dream with a plan and a deadline. What’s your plan for turning your project into a marketable product? Chances are good you don’t have one, and if you ever expect to get to your goal you’re going to need one.

Shawn Hymel is an engineer who led several marketing campaigns for Spark Fun and recently shared his thoughts on marketing with attendees of the first-ever KiCon conference in Chicago. He’ll be dropping by the Hack Chat to talk about everything you ever wanted to know about marketing your hardware projects but were afraid to ask.

join-hack-chat

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, May 8 at noon Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Nintendo’s Cardboard Piano Becomes A Real Working Instrument

Nintendo’s LABO piano is a strange kind of instrument. Hewn out of cardboard and used in combination with some advanced software, it’s entirely passive, with all the sound generation and smarts coming from the Switch console which slots into the body. [Simon the Magpie] decided that this simply wouldn’t do, and set about turning the LABO piano into a real synthesizer (Youtube link, embedded below).

In order to pull off this feat, [Simon] sourced an OKAY synth kit– a basic monophonic synthesizer designed to fit inside a 3D printed case. Instead, here it’s built inside the LABO’s roomy cardboard housing. The keyboard is reinforced with duct tape and tweaked to accept those common and horrible red SPST buttons, and the front panel is fitted with control dials where the Switch would usually sit.

After some careful crafting, the piano is ready to rock. It’s not the most responsive instrument, with the flexible cardboard struggling to reliably trigger the installed buttons, but it does work. [Simon] performs a small instrumental piece over a drum track to demonstrate that you don’t need a Nintendo Switch to have fun with the LABO piano.

Expect to see similar builds on stage at chiptune shows in the next few years – at least until mold gets the better of them. There are other ways to hack the LABO piano, too. Video after the break.

Continue reading “Nintendo’s Cardboard Piano Becomes A Real Working Instrument”

A Million Zombie Taxis By 2020? It’s Not Going To Happen

The tech world has a love for Messianic figures, usually high-profile CEOs of darling companies whose words are hung upon and combed through for hidden meaning, as though they had arrived from above to our venture-capital-backed prophet on tablets of stone. In the past it has been Steve Jobs or Bill Gates, now it seems to be Elon Musk who has received this treatment. Whether his companies are launching a used car into space, shooting things down tubes in the desert, or synchronised-landing used booster rockets, everybody’s talking about him. He’s a showman whose many pronouncements are always soon eclipsed by bigger ones to keep his public on the edge of their seats, and now we’ve been suckered in too, which puts us on the spot, doesn’t it.

Your Johnny Cab is almost here

The latest pearl of Muskology came in a late April presentation: that by 2020 there would be a million Tesla electric self-driving taxis on the road. It involves a little slight-of-hand in assuming that a fleet of existing Teslas will be software upgraded to be autonomous-capable and that some of them will somehow be abandoned by their current owners and end up as taxis, but it’s still a bold claim by any standard.

Here at Hackaday, we want to believe, but we’re not so sure. It’s time to have a little think about it all. It’s the start of May, so 2020 is about 7 months away. December 2020 is about 18 months away, so let’s give Tesla that timescale. 18 months to put a million self-driving taxis on the road. Can the company do it? Let’s find out.

Continue reading “A Million Zombie Taxis By 2020? It’s Not Going To Happen”

Color-Tunable LEDs Open Up Possibilities Of Configurable Semiconductors

The invention of the blue LED was groundbreaking enough to warrant a Nobel prize. For the last decade, researchers have been trying to take the technology to the next level by controlling the color of emission while the device is in operation. In a new research paper, by the guys over Osaka University, Lehigh University, the University of Amsterdam and West Chester University have presented a GaN LEDs that can be tuned to emit different colors from the same substrate.

GaN or Gallium nitride is a wide band-gap semiconductor that has been employed in the manufacturing of FETs that are known to have higher power density due to its high thermal capacity while increasing efficiency. In the the case of the tunable LED, the key has been the doping with Europium for creating energy bands. When an electron jumps from a higher band to a lower band, it emits energy in the form of light and the wavelength or color depends on the gap of energy jumped as per Plank-Einstein equation.

By controlling the current density and duty cycle, the energy jumps can be controller thereby controlling the color being emitted. This is important since it opens up the possibility of control of LEDs post production. External controllers could be used with the same substrates i.e. same LEDs to make a lamp of different intensity as well as color without needing different doping for R,G and B emissions. The reduction in cost as well as size could be phenomenal and could pave the way for similar semiconductor research.

We have covered the details of the LED in the past along with some fundamentals on the control techniques. We are hoping for some high speed color accurate displays in the future that don’t break the bank on our next gaming build.

Thanks for the tip [Qes]

A Hydrogen Fuel Cell Drone

When we think about hydrogen and flying machines, it’s quite common to imagine Zeppelins, weather balloons and similar uses of hydrogen in lighter-than-air craft to lift stuff of the ground. But with smaller and more efficient fuel cells, hydrogen is gaining its place in the drone field. Project RACHEL is a hydrogen powered drone project that involves multiple companies and has now surpassed the 60 minutes of flight milestone.

The initial target of the project was to achieve 60 minutes of continuous flight while carrying a 5 kg payload. The Lithium Polymer battery-powered UAVs flown by BATCAM allow around 12 minutes of useable flight. The recent test of the purpose-built fuel cell powered UAV saw it fly for an uninterrupted 70 minutes carrying a 5 kg payload.  This was achieved on a UAV with below 20 kg maximum take-off mass, using a 6-litre cylinder containing hydrogen gas compressed to 300 bar.

While this is not world record for drones and it’s not exactly clear if there will be a commercial product nor the price tag, it is still an impressive feat for a fuel cell powered flying device. You can watch the footage of one of their tests bellow:

Continue reading “A Hydrogen Fuel Cell Drone”

Web Interface Controls Nixie Tube Clock

We love our clocks around here and we love nixie tubes as well. The combination of the two almost seems to be a no-brainer. With the modern twist of an ESP8266, Reddit user [vladco] built a minimalist nixie tube clock.

The build starts with the nixie tubes, Russian In4s, each one mounted on its own small circuit board. Each board is chained together and they’re mounted on a wooden frame. The frame is mounted inside a nice wooden case which was designed in Fusion 360 and milled out of oak at a local hackerspace.

There are no controls on the case. No buttons or knobs. This clock is set via the EPS8266 which gets the time and updates the shift registers that set the numbers on each of the tubes. The clock dims at night so it’s not as bright. [vladco] wrote a web UI to set the time and interact with the  tubes.

The code and files for the case and circuit board are available online. The result is a nice, minimalist clock for your desk. There are plenty of clock builds on the site, several built from nixie tubes, including another nixie tube clock with an ESP8266, and another.

via Reddit

A Function Generator In Its Purest Form

If you have a modern function generator on your bench it is quite likely to contain a direct-digital synthesis circuit that creates arbitrary waveforms using a microprocessor controlled DAC. If you have a cheap function generator it’s likely to contain a one-chip solution that generates approximations to sine and triangle waveforms through modifying a square wave with a set of filters.

These methods both produce adequate waveforms for most of your function generator needs, but they are both far from perfect for the purist. Both methods introduce some distortion, and to address this [michal777] has produced a generator that takes the process back to basics with all stages implemented using building block ICs and transistors. The circuit follows the same square-wave-modifying path as the cheaper integrated devices, but with significant attention paid to the design to ensure that it does as good a job as possible. It also makes for a fascinating dive into function generator design.

The generator hardware has been neatly fitted onto a PCB with a riser for a set of front panel controls. He shares a few pictures of previous designs. We particularly like one that appears to have been fitted into a redundant cooking pot.

We’ve brought you a few function generators over the years. If you’ve got one of the cheaper examples, we’ve even covered how you might improve it a little.