Credit Card Chip Used To Make Crystal Radio

Perhaps the simplest radio one can build is the crystal radio. Using a diode as a detector, the design generally uses less than 10 components and no battery, getting its power to run from the radio signal itself. [Billy Cheung] decided to build a crystal radio using a rather unconventional detector – the smart chip in a common credit card.

This is possible because the smart chip on many credit cards contains a diode. It’s then a simple matter of hooking up the right pads on the credit card to the rest of a crystal radio circuit, and you’re all set. Of course, [Billy] goes the whole hog, building the entire radio on a single credit card. Other cards are cut up to create bobbins for winding coils to form a variable inductor, used to tune the radio. Doing this allows for a much cleaner, thinner design, rather than using a variable capacitor which is comparatively hard to find. Turning the dial allows stations to be tuned in, and with a high impedance earbud hooked up, you’re listening to AM radio. Oh, and don’t forget an antenna!

[Billy] breaks down the details for anyone wishing to replicate the feat, going so far as to wind the coils in real time in his Youtube video. Cutting templates and other details are available on Github. While it’s not going to be the most replicated hack, as it requires the destruction of a credit card to achieve, we love the ingenuity. And, if society does collapse, we’ll all have a great source of diodes when the ATMs have all become useless. Video after the break.

[Thanks to Zane Atkins for the tip!]

Continue reading “Credit Card Chip Used To Make Crystal Radio”

Python Is All You’ll Ever Need In This Linux Distro

Choosing the perfect Linux distribution that satisfies your personal needs and likings can be an impossible task, and oftentimes requires a hint of Stockholm syndrome as compromise. In extreme cases, you might end up just rolling your own distro. But while frustration is always a great incentive for change, for [Josh Moore] it was rather curiosity and playful interest that led him to create snakeware, a Linux distribution where the entire user space not only runs on Python, but is Python.

Imagine you would boot your Linux system, and instead of the shell of your choice, you would be greeted by an interactive Python interpreter, and everything you do on the system will be within the realms of that interpreter — that’s the gist of snakeware. Now, this might sound rather limiting at first, but keep in mind we’re talking about Python here, a language known for its versatility, with an abundance of packages that get things done quick and easy, which is exactly what [Josh] is aiming for. To get an idea of that, snakeware also includes snakewm, a graphical user interface written with pygame that bundles a couple of simple applications as demonstration, including a terminal to execute Python one-liners.

Note that this is merely a proof of concept at this stage, but [Josh] is inviting everyone to contribute and extend his creation. If you want to give it a go without building the entire system, the GitHub repository has a prebuilt image to run in QEMU, and the window manager will run as regular Python application on your normal system, too. To get just a quick glimpse of it, check the demo video after the break.

Sure, die-hard Linux enthusiasts will hardly accept a distribution without their favorite shell and preferable language, but hey, at least it gets by without systemd. And while snakeware probably won’t compete with more established distributions in the near future, it’s certainly an interesting concept that embraces thinking outside the box and trying something different. It would definitely fit well on a business card.

Continue reading “Python Is All You’ll Ever Need In This Linux Distro”

The Easiest Way To Put Your Doorbell On The Internet

Thanks to low-cost WiFi enabled microcontrollers such as the ESP8266 and ESP32, it’s never been a better time to roll your own smart home system. But that doesn’t mean it isn’t daunting for new players. If you’re looking for an easy first project, putting your old school doorbell on the Internet of Things is a great start, but even here there’s some debate about how to proceed.

Most people stumble when they get to the point where they have to connect their low-voltage microcontroller up to the relatively beefy transformer that drives a standard doorbell. We’ve seen a number of clever methods to make this connection safely, but this tip from [AnotherMaker] is probably the easiest and safest way you’re likely to come across.

His solution only requires an inductive current sensor, which can be had for less than $1 from the usual overseas suppliers. One leg of the doorbell circuit is passed through the center of this sensor, and the sensor itself is connected up to your microcontroller of choice (here, and ESP32). The rest is software, which [AnotherMaker] explains in the video after the break. With the addition of a little debounce code, your microcontroller can reliably determine when somebody is out there jabbing the bell button; what you do with this information after that is up to you.

If you’re worried this method is too easy you could always try it with an optocoupler, or maybe convert the low-voltage AC to something your microcontroller can handle.

Continue reading “The Easiest Way To Put Your Doorbell On The Internet”

Cast Metal From Prints To Solidify Childhood Memories

As far as the hacker’s toolbox goes, the 3D printer is way up there in terms of utility. Sure, it takes time to learn the ins and outs of designing, slicing, and extruding, but after that, the world is pretty much your additive oyster. Follow those design dreams, or use it to replace the things that break. The icing on the cake? You can chase those dreams into other materials, because 3D prints can be used to cast metal.

[RetroTech Journal] wanted to fry up some rosette cookies, a Scandinavian delight from his youth that look a lot like fancy, personal funnel cakes. They’re made with special aluminium irons that shape the dough while it fries, as opposed to the jumbled chaos that is funnel cake.

Rosette irons come in a few traditional shapes, but once you get tired of those, it’s up to you to cast them in aluminium. And how would you go about doing that? By creating a firmly-packed sand mold using a mounted 3D print.

In the endlessly entertaining video after the break, [RetroTech Journal] takes you through the entire process from CAD to cookies. It has everything you could possibly want: LEGO stop-motion, claymation, a little bit of cooking, and a whole lot of knowledge. We can’t wait to see what comes next.

We’ve seen quite a few sand casting projects over the years, but this lathe is among the most useful.

Continue reading “Cast Metal From Prints To Solidify Childhood Memories”

RC Lawn Mower Keeps The Grass Greener On Your Side Of The Fence

For some people, mowing the lawn is a dreaded chore that leads to thoughts of pouring a concrete slab over the yard and painting it green. Others see it as the perfect occasion to spend a sunny afternoon outside. And then there are those without the luxury of having a preference on the subject in the first place. [elliotmade] for example has a friend who’s sitting in a wheelchair, and would normally have to rely on others to maintain his lawn and form an opinion on the enjoyability of the task. So to retain his friend’s independence, he decided to build him a remote-controlled lawn mower.

After putting together an initial proof of concept that’s been successfully in use for a few years now, [elliotmade] saw some room for improvement and thought it was time for an upgrade. Liberating the drive section of an electric wheelchair, he welded a frame around it to house the battery and the mower itself, and added an alternator to charge the battery directly from the mower’s engine. An RC receiver that connects to the motor driver is controlled by an Arduino, as well as a pair of relays to switch both the ignition and an electric starter that eliminates the need for cord pulling. Topping it off with a camera, the garden chores are now comfortably tackled from a distance, without any issues of depth perception.

Remote-controlling a sharp-bladed machine most certainly requires a few additional safety considerations, and it seems that [elliotmade] thought this out pretty well, so failure on any of the involved parts won’t have fatal consequences. However, judging from the demo video embedded after break, the garden in question might not be the best environment to turn this into a GPS-assisted, autonomous mower in the future. But then again, RC vehicles are fun as they are, regardless of their shape or size.

Continue reading “RC Lawn Mower Keeps The Grass Greener On Your Side Of The Fence”

Linux Fu: Raspberry Pi Desktop Headless

It seems to me there are two camps when it comes to the Raspberry Pi. Some people use them as little PCs or even laptops with a keyboard and screen connected. But many of us use them as cheap Linux servers. I’m in the latter camp. I have probably had an HDMI plug in a Pi only two or three times if you don’t count my media streaming boxes. You can even set them up headless as long as you have an Ethernet cable or are willing to edit the SD card before you boot the machine for the first time.

However, with the Raspberry Pi 4, I wanted to get to a desktop without fishing up a spare monitor. I’ll show you two ways to get a full graphical KDE desktop running with nothing more than a network connection.

The same principle applies to most other desktop environments, but I am using KDE and Ubuntu on the Pi, even though something lighter would probably perform better. But before we get there, let’s talk about how X11 has had a big identity crisis over the years.

The Plan

There are many ways to remotely access X programs, many of which are rarely used today. However, for this purpose, we are going to use SSH tunneling along with some special tricks to get the entire desktop running. It is easy to just run a single X program over SSH, and you’ve probably done that often. If so, you can skip to the next section.

Continue reading “Linux Fu: Raspberry Pi Desktop Headless”

Physical Security Hack Chat With Deviant Ollam

Join us on Wednesday, June 3 at noon Pacific for the Physical Security Hack Chat with Deviant Ollam!

You can throw as many resources as possible into securing your systems — patch every vulnerability religiously, train all your users, monitor their traffic, eliminate every conceivable side-channel attack, or even totally air-gap your system — but it all amounts to exactly zero if somebody leaves a door propped open. Or if you’ve put a $5 padlock on a critical gate. Or if your RFID access control system is easily hacked. Ignore details like that and you’re just inviting trouble in.

Once the black-hats are on the inside, their job becomes orders of magnitude easier. Nothing beats hands-on access to a system when it comes to compromising it, and even if the attacker isn’t directly interfacing with your system, having him or her on the inside makes social engineering attacks that much simpler. System security starts with physical security, and physical security starts with understanding how to keep the doors locked.

join-hack-chatTo help us dig into that, Deviant Ollam will stop by the Hack Chat. Deviant works as a physical security consultant and he’s a fixture on the security con circuit and denizen of many lockpicking villages. He’s well-versed in what it takes to keep hardware safe from unauthorized visits or to keep it from disappearing entirely. From CCTV systems to elevator hacks to just about every possible way to defeat a locked door, Deviant has quite a bag of physical security tricks, and he’ll share his insights on keeping stuff safe in a dangerous world.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, June 3 at 12:00 PM Pacific time. If time zones have you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.